Mathematical Methods for
 Quantum Information Theory

Part I: Matrix Analysis

Koenraad Audenaert (RHUL, UK)

Preface

- Books on Matrix Analysis:
- R. Bhatia, Matrix Analysis, Springer, 1997.
- R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge, 1985.
- R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge, 1991.
- X. Zhan, Matrix Inequalities, Springer, 1999.
- Journals: Linear Algebra and its Applications, and others
- Purpose of Lecture: introduction to those aspects of matrix analysis that are/may be/have been useful in QIT
- No Proofs

Contents (roughly)

- Classes of matrices
- Operations and functions on matrices
- Matrix Decompositions
- Matrix Norms
- Applications in QIT: Schmidt decomposition, distance measures
- For this Lecture, I've set 10 questions, but don't do all of them.
- Marks are between square brackets []. Hard questions receive more marks. Aim at a total of about 10 marks.

1. The very basics

Matrices

- If you don't know what a matrix is, there are 3 good movies about them.
- Matrix product is non-commutative: $A B \neq B A$
- In QIT, matrices occur whenever systems are finite-dimensional (in one way or another): density matrices, observables, Hamiltonians, POVMs, maps, channels.

Basic Matrix Operations

- Inverse: A^{-1}, satisfies $A A^{-1}=\mathbf{I}$; need not always exist
- Transpose: $A^{T},\left(A^{T}\right)_{i, j}=A_{j, i}$
- Complex Conjugate: $\bar{A}, \bar{A}_{i, j}=\overline{A_{i, j}}$
- Hermitian Conjugate: $A^{*}=\overline{A^{T}}$
- Note: in physics: A^{\dagger}, in engineering: A^{H}
- Example: if $A=|\psi\rangle$, then $A^{*}=\langle\psi|$
- $(A B)^{T}=B^{T} A^{T}$
- $\overline{A B}=\bar{A} \bar{B}$
- $(A B)^{*}=B^{*} A^{*}$
- Trace: for square matrices $\operatorname{Tr}(A)=\sum_{i} A_{i, i}$
- Linear: $\operatorname{Tr}(a A+b B)=a \operatorname{Tr} A+b \operatorname{Tr} B$
- Cyclicity property: $\operatorname{Tr}(A B)=\operatorname{Tr}(B A), \operatorname{Tr}(A B C)=\operatorname{Tr}(B C A), \ldots$

Matrix Classes

- Diagonal matrix: square matrix with non-zero elements on diagonal only:

$$
A_{i, j}=a_{i} \delta_{i, j} \text { or } A=\operatorname{Diag}\left(a_{1}, a_{2}, \ldots\right)
$$

- Identity matrix I: diagonal matrix with all 1's on the diagonal: $\mathbf{I}_{i, j}=\delta_{i, j}$
- Scalar matrix: $A=a \mathbf{I}$
- Hermitian matrix: $A=A^{*}$
- Positive semi-definite (PSD) matrix: a matrix that has square root(s)

$$
A \geq 0 \Longleftrightarrow \exists B: A=B^{*} B
$$

- Unitary matrix: square matrix U with $U^{*} U=\mathbf{I}$
- Projector: a Hermitian matrix equal to its own square: $P=P^{2}$.

Characterisations

- Examples of Hermitian matrices: observables, Hamiltonians
- Example of PSD matrices: density matrices; e.g. $A=|\psi\rangle\langle\psi|: B^{*}=|\psi\rangle$
- Examples of unitary matrices: any evolution operator, Pauli matrices, CNOT
- A matrix A is Hermitian iff all its expectation values are real:
$\forall \psi:\langle\psi| A|\psi\rangle \in \mathbb{R}$
- A matrix A is PSD iff all its expectation values are real and non-negative: $\forall \psi:\langle\psi| A|\psi\rangle \geq 0$.
- Exercise 1 [3]: prove this last statement from the definition of PSD.
- A matrix is unitary iff its column vectors form an orthonormal basis
- For square $U, U^{*} U=\mathbf{I}$ implies $U U^{*}=\mathbf{I}$

2. The Density Matrix Formalism

Dealing with Statistical Uncertainty

- State vectors are used mainly in undergraduate QM courses and in quantum field theory.
- In real experiments, we have to deal with many uncertainties and uncontrollable factors.
- E.g. preparation of a particle in some state is never perfect. What we get is $\psi=(\cos \alpha, \sin \alpha)^{T}$, with some α close to the desired value, but with errors.
- How can we efficiently deal with those and other errors in QM?
- Naïve method: specify distribution of parameters (α) or of state itself.
- That's both complicated and unnecessary. What we can measure are only expectation values, like $\langle\psi| \hat{O}|\psi\rangle$.

Dealing with Statistical Uncertainty

- Because of statistical uncertainty on ψ, expressed by the probability density $p(\psi) d \psi$, we measure $\int d \psi p(\psi)\langle\psi| \hat{O}|\psi\rangle$.
- Rewrite this as $\operatorname{Tr}\left[\left(\int d \psi p(\psi)|\psi\rangle\langle\psi|\right) \hat{O}\right]$.
- We can calculate all expectation values, once we know the matrix

$$
\int d \psi p(\psi)|\psi\rangle\langle\psi| .
$$

- Hence, this is "the" state! We call it the density matrix (cf. probability density). Usual symbol ρ.
- Exercise 2 [2]: Prove that a density matrix is PSD and has trace 1.

Dealing with Statistical Uncertainty

- A set of state vectors ψ_{i} with given probabilities p_{i} is called an ensemble.
- A density matrix is the barycenter of the ensemble.
- Different ensembles may yield the same density matrix:

$$
\left.\begin{array}{c}
\left\{p_{1}=1 / 2, \psi_{1}=(1,0), p_{2}=1 / 2, \psi_{2}=(0,1)\right\} \\
\left\{p_{1}=1 / 2, \psi_{1}=(1,1) / \sqrt{2},\right.
\end{array} p_{2}=1 / 2, \psi_{2}=(1,-1) / \sqrt{2}\right\}
$$

both yield the density matrix $\rho=\mathbf{I} / 2$, the maximally mixed state.

- We can never figure out which ensemble a density matrix originated from!
- A state with density matrix of the form $\rho=\psi \psi^{*}=|\psi\rangle\langle\psi|$ is a pure state and corresponds to a state vector ψ.
- Otherwise, we call the state a mixed state (cf. statistical mixing).

3. Tensor Products, Partial Traces and Partial Transposes

Tensor Product of Vectors

- Suppose I have 2 independent particles. Particle 1 is in state ϕ, and particle 2 in state θ.
- The particles taken together are then in the state ψ, which is the tensor product of ϕ and θ.
- Notation $|\psi\rangle=|\phi \otimes \theta\rangle=|\phi\rangle|\theta\rangle$.
- E.g. $(1,2) \otimes(3,4)=(3,4,6,8)$.
- Note the order! "The indices of particle 2 change fastest"

$$
\psi=\left(\phi_{\uparrow}, \phi_{\downarrow}\right) \otimes\left(\theta_{\uparrow}, \theta_{\downarrow}\right)=\left(\psi_{\uparrow \uparrow}, \psi_{\uparrow \downarrow}, \psi_{\downarrow \uparrow}, \psi_{\downarrow \downarrow}\right) \text {, with } \psi_{i j}=\phi_{i} \theta_{j} \text {. }
$$

- To do the same for matrices, it is beneficial to use block matrix notation.

Block matrices

- A block matrix can be seen as being a matrix whose elements are matrices themselves (of equal size).
- Example: $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$.
- Indexing is more complicated. We need row and column indexes to single out a block, and row and column indexes to single out an element within that block. Hence the need to use composite indices.
- Let i, k be (row/col) indexes pointing to a block, and j, l indexes pointing within the block. Then (i, j) denotes a composite row index, and (k, l) a composite column index.
- The elements of a block matrix can then be denoted by $A_{(i, j),(k, l)}$, and

$$
A=\sum_{i, j, k, l} A_{(i, j),(k, l)}|i\rangle|j\rangle\langle k|\langle l|=\sum_{i, j, k, l} A_{(i, j),(k, l)}|i\rangle\langle k| \otimes|j\rangle\langle l| .
$$

Tensor Product of Matrices

- The tensor product, a.k.a. Kronecker Product, of matrices A and $B, A \otimes B$, can be represented by a block matrix with elements

$$
(A \otimes B)_{(i, j),(k, l)}=A_{i, k} B_{j, l}
$$

- E.g. when A is 2×2

$$
A \otimes B=\left(\begin{array}{ll}
A_{11} B & A_{12} B \\
A_{21} B & A_{22} B
\end{array}\right)
$$

- Trace rule: $\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B)$

Partial Trace

- To "ignore" a particle in a group of particles in a given state, "trace out" that particle.
- The partial trace of the i th factor in a tensor product is obtained by replacing the i th factor with its trace:

$$
\begin{aligned}
\operatorname{Tr}_{1}(A \otimes B) & =\operatorname{Tr}(A) \otimes B=\operatorname{Tr}(A) B \\
\operatorname{Tr}_{2}(A \otimes B) & =A \otimes \operatorname{Tr}(B)=\operatorname{Tr}(B) A
\end{aligned}
$$

- In block matrix form:

$$
\begin{aligned}
& \operatorname{Tr}_{1}(A \otimes B)=\operatorname{Tr}_{1}\left(\begin{array}{ll}
A_{11} B & A_{12} B \\
A_{21} B & A_{22} B
\end{array}\right)=A_{11} B+A_{22} B \\
& \operatorname{Tr}_{2}(A \otimes B)
\end{aligned}=\operatorname{Tr}_{2}\left(\begin{array}{ll}
A_{11} B & A_{12} B \\
A_{21} B & A_{22} B
\end{array}\right)=\left(\begin{array}{ll}
A_{11} \operatorname{Tr} B & A_{12} \operatorname{Tr} B \\
A_{21} \operatorname{Tr} B & A_{22} \operatorname{Tr} B
\end{array}\right), ~ l
$$

Partial Trace

- By linearity of the trace, this extends to all block matrices:

$$
\begin{array}{r}
\operatorname{Tr}_{1}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=A+D \\
\operatorname{Tr}_{2}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
\operatorname{Tr} A & \operatorname{Tr} B \\
\operatorname{Tr} C & \operatorname{Tr} D
\end{array}\right)
\end{array}
$$

- Equivalent definition:

$$
\begin{aligned}
\operatorname{Tr}((\mathbf{I} \otimes X) A) & =\operatorname{Tr}\left(X \operatorname{Tr}_{1} A\right), \forall X \\
\operatorname{Tr}((X \otimes \mathbf{I}) A) & =\operatorname{Tr}\left(X \operatorname{Tr}_{2} A\right), \forall X
\end{aligned}
$$

- Exercise [1000]: Relate the eigenvalues of A to those of $\operatorname{Tr}_{1} A$ and $\operatorname{Tr}_{2} A$.

Partial Transpose

- Another "partial" operation on block matrices is the partial transpose.
- Take again a 2 -qubit state with density matrix ρ written as a block matrix $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$.
- The partial transpose w.r.t. the first particle: $\rho^{\Gamma_{1}}=\left(\begin{array}{ll}A & C \\ B & D\end{array}\right)$.
- The partial transpose w.r.t. the second particle: $\rho^{\Gamma_{2}}=\left(\begin{array}{ll}A^{T} & B^{T} \\ C^{T} & D^{T}\end{array}\right)$.
- The partial transpose of a state need no longer be a state; it is if ρ is separable.

4. Completely Positive (CP) maps

Operations on States

- There exist various ways of operating on states:
- Unitary evolution: $|\psi\rangle \rightarrow U|\psi\rangle$
- Adding particles (in a determined state): $|\psi\rangle \rightarrow|\psi\rangle \otimes|0\rangle$
- Removing/ignoring particles: $|\psi\rangle\langle\psi| \rightarrow \operatorname{Tr}_{1}|\psi\rangle\langle\psi|$
- Measurements: $|\psi\rangle \rightarrow\langle\psi| E_{i}|\psi\rangle$
- Combinations thereof
- Measurement outcomes may even determine the choice of subsequent operations
- Absolutely astonishing fact about QM \#31: all of this can be combined into one simple formula!

Operations on States

- Every quantum operation, composed of the above basic operations, can be written as a completely positive, trace preserving, linear map or CPT map Φ acting on the density matrix: $\rho \mapsto \Phi(\rho)$
- Completely positive = positivity preserving when acting on any subset of the state's particles: because a state should remain a state.
- Non-example: The matrix transpose is a positive, trace preserving linear map, but not a completely positive one: when it acts on 1 particle of an EPR state, one gets a non-positive matrix.

Characterisation of CP(T) maps

- By dropping the trace-preservation requirement, we get a CP map.
- Any linear map can be represented using its Choi-matrix $\mathbf{\Phi}$:
- A block matrix with $d_{\text {in }} \times d_{\text {in }}$ blocks of size $d_{\text {out }} \times d_{\text {out }}$
- Block i, j of $\boldsymbol{\Phi}$ is given by $\Phi(|i\rangle\langle j|)$
$-\Phi(\rho)=\sum_{i, j} \rho_{i j} \Phi(|i\rangle\langle j|)=\operatorname{Tr}_{1}\left[\Phi .\left(\rho^{T} \otimes \mathbf{I}\right)\right]$.
- A map Φ is CP if and only if its Choi-matrix Φ is PSD [Choi].
- Exercise 3 [8]: Prove this. Hint: operate the map on one particle of the EPR state $\psi=\sum_{i=1}^{d_{i n}}|i\rangle|i\rangle$.
- Exercise 4 [5]: Find the Choi matrix of matrix transposition (for qubit states) and use it to show why transposition is not a CP map.

Characterisation of $\mathrm{CP}(\mathrm{T})$ maps

- Since the Choi-matrix is a block matrix, we can define its partial traces: $\operatorname{Tr}_{1}=\operatorname{Tr}_{\text {in }}$ and $\mathrm{Tr}_{2}=\mathrm{Tr}_{\text {out }}$
- Exercise 5 [4]: Show that a CP map is trace preserving if and only $\mathrm{Tr}_{\text {out }} \Phi=\mathbf{I}$.

5. Matrix Decompositions

Matrix Functions

- Problem: to calculate von Neumann entropy $S(\rho)=-\operatorname{Tr}[\rho \log \rho]$, we need to calculate functions of matrices.
- Analytic functions can be represented by (formal) power series $f(z)=$ $\sum_{k=0} a_{k} z^{k}$.
- Since we know how to multiply matrices we can calculate $\sum_{k=0} a_{k} A^{k}$
- This (formally) defines a matrix function $f(A)$
- Example: $\exp (A)=\sum_{k=0} A^{k} / k!$
- Series are not the most convenient way to work with matrix functions

Eigenvalues

- Many of the presented concepts get "easier" descriptions when the matrix has an eigenvalue decomposition.
- Eigenvalue/eigenvector: $A x=\lambda x$, $\operatorname{det}(A-\lambda \mathbf{I})=0$.
- Stack $x^{(i)}$ columnwise in matrix S, and λ_{i} in diagonal matrix Λ :
$A S=S \Lambda$
- If S is invertible, we get $A=S \Lambda S^{-1}$
- A matrix is diagonalisable if there exists an invertible S such that $S^{-1} A S$ is diagonal.
- A matrix is unitarily diagonalisable if there exists a unitary U such that $U^{-1} A U=U^{*} A U$ is diagonal; then $A=U \Lambda U^{*}$.

Eigenvalues

- Theorem: A matrix A is unitarily diagonalisable (UD) iff the matrix is normal $\left(A A^{*}=A^{*} A\right)$
- The eigenvalue decomposition (EVD) of a normal matrix A is $A=U \Lambda U^{*}$
- A Hermitian matrix is UD, with real eigenvalues
- A PSD matrix is UD, with non-negative eigenvalues
- A Projector $\left(P=P^{2}\right)$ has eigenvalues ...

Matrix Functions

- Matrix functions of Hermitian (or PSD) matrices: $f(A)=U f(\Lambda) U^{*}$, where f operates entrywise on the diagonal elements (eigenvalues)
- Example: for PSD A, with $A=U \Lambda U^{*}$, THE square root is

$$
A^{1 / 2}=U \operatorname{Diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \ldots\right) U^{*}
$$

- Matrix absolute value (or modulus): $|A|=\left(A^{*} A\right)^{1 / 2}$
- Exercise 6 [3]: For Hermitian H, express $\operatorname{Tr}(H),|H|$ and $\operatorname{Tr}|H|$ in terms of its EVD. For $A \geq 0$, what is $|A|$?

Singular values

- Not all square matrices are diagonalisable, and none of the non-square matrices are.
- All matrices, even the non-square ones, have a singular value decomposition (SVD), and it is essentially unique: $A=U \Sigma V^{*}$, where U and V are unitary and Σ is "diagonal".
- One can find U and V s.t. the diagonal elements of Σ are non-negative reals and sorted in non-ascending fashion; then the diagonal elements of $\Sigma, \sigma_{i}(A)$, are the singular values of A.
- Use a computer with (Matlab, Maple, Mathematica)
- Exercise 7 [3]: show that for $A \geq 0, \sigma_{i}(A)=\lambda_{i}(A)$.

Singular values and Rank

- One of the ways to check invertibility of a square matrix is to inspect its singular values: A is invertible iff all $\sigma_{i}(A)>0$, strictly.
- The number of non-zero singular values of A equals the rank of $A=$ the number of independent column (or row) vectors of A.
- The density matrix of a pure state has rank 1.

Schmidt decomposition

- Tilde notation: converts a pure bipartite state vector ψ to a matrix, denoted $\tilde{\psi}$.
- For $\psi=\sum_{i=1 . . d_{1}, j=1 . . d_{2}} x_{i, j}|i\rangle|j\rangle, \tilde{\psi}$ is the matrix $x_{i, j}$.
- Example: 2-qubit states $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$

$$
\begin{array}{ll}
|1\rangle|1\rangle=(1,0,0,0) & |1\rangle|2\rangle=(0,1,0,0) \\
|2\rangle|1\rangle=(0,0,1,0) & |2\rangle|2\rangle=(0,0,0,1)
\end{array}
$$

- Thus $\tilde{\psi}=\left(\begin{array}{ll}\psi_{1} & \psi_{2} \\ \psi_{3} & \psi_{4}\end{array}\right)$.
- In general, for vectors u and $v, \widetilde{u \otimes v}=u v^{T}$.
- In bra-ket notation: $\widetilde{|u\rangle|v\rangle}=|u\rangle\langle\bar{v}|$.

Schmidt decomposition

- Schmidt decomposition: one can find orthonormal bases $\left\{u_{k}\right\}$ and $\left\{v_{k}\right\}$ of the two systems, respectively, and non-negative Schmidt coefficients σ_{k}, such that

$$
\psi=\sum_{k} \sigma_{k}\left|u_{k}\right\rangle\left|v_{k}\right\rangle
$$

- Proof: The Schmidt decomposition of ψ is the SVD of the matrix $\tilde{\psi}$.
- Write $\tilde{\psi}=U \Sigma V^{*}$, and denote the k-th column vector of U by $\left|u_{k}\right\rangle$, of V by $\left|v_{k}\right\rangle$. Denote the k-th diagonal element of Σ by σ_{k}.
- Because U is unitary, the $\left\{\left|u_{k}\right\rangle\right\}$ are orthonormal. Same for V.

Schmidt decomposition

- Then

$$
\tilde{\psi}=\sum_{k} \sigma_{k}\left|u_{k}\right\rangle\left\langle v_{k}\right|,
$$

so that

$$
\psi=\sum_{k} \sigma_{k}\left|u_{k}\right\rangle\left|\overline{v_{k}}\right\rangle .
$$

- Product state: if $\psi=\phi \otimes \theta$, then $\tilde{\psi}=\phi \theta^{T}$, which has rank 1. I.e. only 1 non-zero Schmidt coefficient.
- A pure states ψ is entangled iff $\tilde{\psi}$ has rank $>$ 1, i.e. has more than 1 non-zero Schmidt coefficients.

6. Matrix Norms

Matrix Norms

- A matrix norm $|||A|||$ is a mapping from the space of matrices to \mathbb{R}_{+}obeying:
- |||A|||=0iff $A=0$
- Homogeneous: |||zA|||=|z||||A|||
- Triangle inequality: $|||A+B|| \leq|||A|||+||B|||$
- Submultiplicative: |||AB||| $\leq|||A|||| ||B|| |$
- Of particular interest are the unitarily invariant (UI) matrix norms:
$|||U A V|||=|||A|||$, i.e. they depend only on $\sigma(A)$

UI Matrix Norms

- Operator norm: $\|A\|=\|A\|_{\infty}=\sigma_{1}(A)$, largest singular value
- Trace norm: $\|A\|_{\mathrm{Tr}}=\|A\|_{1}=\sum_{i=1}^{n} \sigma_{i}(A)=\operatorname{Tr}|A|$
- Frobenius or Hilbert-Schmidt norm:
$\|A\|_{2}=\left(\sum_{i=1}^{n} \sigma_{i}^{2}(A)\right)^{1 / 2}=\left(\operatorname{Tr}|A|^{2}\right)^{1 / 2}=\left(\sum_{i, j}\left|A_{i, j}\right|^{2}\right)^{1 / 2}$
- Schatten q-norms: $\|A\|_{q}=\left(\sum_{i=1}^{n} \sigma_{i}^{q}(A)\right)^{1 / q}=\left(\operatorname{Tr}|A|^{q}\right)^{1 / q}$

Matrix norms in QIT

- Matrix norms are important in QIT for many reasons
- A Schatten norm of a state is a measure of its purity: it is 1 for pure states, and strictly less than 1 for mixed states. Minimal for maximally mixed state.
- Exercise 8 [2]: calculate the Schatten q-norm of the d-dimensional maximally mixed state \mathbf{I}_{d} / d.
- The entanglement measure "negativity" is defined as the trace norm of the partial transpose of a bipartite state: $N=\left\|\rho^{\Gamma}\right\|_{1}=\operatorname{Tr}\left|\rho^{\Gamma}\right|$.
- Exercise 9 [3]: Show that N is equal to 1 minus 2 times the sum of the negative eigenvalues of ρ^{Γ}.
- Matrix norms of $\rho-\sigma$ can be used as a distance measure between states: the states are equal iff their difference has zero norm.

Matrix norms in QIT

- The von Neumann entropy $S(\rho)$ is closely related to the Schatten q norms.
- Note the following:

$$
\frac{d}{d q} x^{q}=x^{q} \log x
$$

- Thus

$$
x \log x=\left.\frac{d}{d q}\right|_{q=1} x^{q}
$$

and

$$
S(\rho)=-\operatorname{Tr} \rho \log \rho=-\left.\frac{d}{d q}\right|_{q=1} \operatorname{Tr} \rho^{q}
$$

- Note that $\operatorname{Tr} \rho^{q}=\left(\|\rho\|_{q}\right)^{q}$.

Matrix norms in QIT

- Alternative relation:

$$
-x \log x=\lim _{q \rightarrow 1} \frac{x-x^{q}}{q-1}
$$

thus

$$
S(\rho)=\lim _{q \rightarrow 1} \frac{1-\operatorname{Tr} \rho^{q}}{q-1}
$$

- One more tool for proving things about entropy

7. Distance measures between states

Need for State Distance Measures

- Example 1. Given an initial state ρ, and a class of maps, find the map Φ such that $\Phi(\rho)$ comes as close to a desired σ as possible.
- Example 2. L. Hardy's "Crazy Qubits": find the "best" physical (CPT) approximation of non-physical (non-CP, non-TP, non-linear) maps
- We could ask for the approximating map's output states to be as close to the hypothetical map's output states as possible.
$\bullet \rightarrow$ Thus the need for distance measures between states.

Linear Fidelity

- Pure states: Overlap = Linear Fidelity:

$$
F_{L}(\psi, \phi)=|\langle\psi \mid \phi\rangle|^{2}=\operatorname{Tr}[|\psi\rangle\langle\psi||\phi\rangle\langle\phi|] .
$$

This is 1 iff $|\psi\rangle\langle\psi|=|\phi\rangle\langle\phi|$, and less than 1 otherwise. It is 0 for orthogonal states.

- For mixed states, the linear fidelity $F_{L}(\rho, \sigma)=\operatorname{Tr}[\rho \sigma]$ is not very useful.
- Exercise 10 [2]: why not?

Uhlmann Fidelity

- For mixed states, we can use the Uhlmann fidelity.

$$
F_{U}(\rho, \sigma)=\operatorname{Tr} \sqrt{\rho^{1 / 2} \sigma \rho^{1 / 2}} .
$$

- Characterisation: $\left(F_{U}\right)^{2}$ is the linear fidelity between purifications

$$
\begin{aligned}
& F_{U}(\rho, \sigma)=\max _{\psi, \phi}\{|\langle\psi \mid \phi\rangle|: \\
& \operatorname{Tr}_{2}(|\psi\rangle\langle\psi|)=\rho, \\
&\left.\operatorname{Tr}_{2}(|\phi\rangle\langle\phi|)=\sigma\right\} .
\end{aligned}
$$

- F_{U} coincides with $\sqrt{F_{L}}$ when ρ or σ is pure.
- Bures Distance: $D_{B}(\rho, \sigma)=2 \sqrt{1-F_{U}(\rho, \sigma)}$.

Trace Distance

- Trace Distance: $T(\rho, \sigma)=\|\rho-\sigma\|_{1} / 2$. Between 0 and 1.
- Obeys triangle inequality.
- Easier than Bures distance.
- Statistical interpretation: error probability of optimal POVM for distinguishing between ρ and σ is

$$
P_{e}=(1-T(\rho, \sigma)) / 2
$$

- Behaves "erratically" under tensor powers. One can find states such that

$$
\begin{aligned}
T(\rho, \sigma) & <T(\tau, v) \\
\text { but } T(\rho \otimes \rho, \sigma \otimes \sigma) & >T(\tau \otimes \tau, v \otimes v)
\end{aligned}
$$

Relative Entropy

- Relative Entropy: $S(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)$.
- Statistical interpretation: error exponent of optimal asymmetric hypothesis test.
- Behaves nicely under tensor powers:

$$
S\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right)=n S(\rho \| \sigma) .
$$

- Relative entropy does not obey triangle inequality.
- Asymmetric in its arguments.
- For pure states, either 0 (same states) or infinite (different states).
- Quantum Chernoff Distance combines the best of T and S. It is the regularisation of T w.r.t. taking tensor powers.

The Quantum Chernoff distance

- Recall: error probability of optimal POVM for distinguishing between ρ and σ is

$$
P_{e}=(1-T(\rho, \sigma)) / 2 .
$$

- Now do the same for n copies of the two states: error probability of the optimal POVM is

$$
P_{e}=\left(1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)\right) / 2 .
$$

- This P_{e} goes down exponentially with n at a rate

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left(1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)\right) .
$$

The Quantum Chernoff distance

- A closed-form expression of the rate is given by the quantum Chernoff distance:

$$
-\log Q, \quad \text { with } Q=\min _{0 \leq s \leq 1} \operatorname{Tr}\left[\rho^{s} \sigma^{1-s}\right] .
$$

- Just like the relative entropy, $-\log Q$ is multiplicative:

$$
-\log Q\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)=-n \log Q(\rho, \sigma) .
$$

- For pure states, $-\log Q$ attains all values between 0 and ∞. For equal states 0 , for orthogonal states ∞.
- Does not obey triangle inequality.

