Mathematical Methods for Quantum Information Theory

Part I: Matrix Analysis

Koenraad Audenaert (RHUL, UK)

September 14, 2008

Preface

- Books on Matrix Analysis:
 - R. Bhatia, Matrix Analysis, Springer, 1997.
 - R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge, 1985.
 - R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge, 1991.
 - X. Zhan, Matrix Inequalities, Springer, 1999.
- Journals: Linear Algebra and its Applications, and others
- Purpose of Lecture: introduction to those aspects of matrix analysis that are/may be/have been useful in QIT
- No Proofs

Contents (roughly)

- Classes of matrices
- Operations and functions on matrices
- Matrix Decompositions
- Matrix Norms
- Applications in QIT: Schmidt decomposition, distance measures
- For this Lecture, I've set 10 questions, but don't do all of them.
- Marks are between square brackets []. Hard questions receive more marks. Aim at a total of about 10 marks.

1. The very basics

Matrices

- If you don't know what a matrix is, there are 3 good movies about them.
- Matrix product is non-commutative: $AB \neq BA$
- In QIT, matrices occur whenever systems are finite-dimensional (in one way or another): density matrices, observables, Hamiltonians, POVMs, maps, channels.

Basic Matrix Operations

- Inverse: A^{-1} , satisfies $AA^{-1} = \mathbf{I}$; need not always exist
- Transpose: A^T , $(A^T)_{i,j} = A_{j,i}$
- Complex Conjugate: \overline{A} , $\overline{A}_{i,j} = \overline{A_{i,j}}$
- Hermitian Conjugate: $A^* = \overline{A^T}$
 - Note: in physics: A^{\dagger} , in engineering: A^{H}
 - Example: if $A = |\psi\rangle$, then $A^* = \langle \psi |$
- $\bullet \; (AB)^T = B^T A^T$
- $\overline{AB} = \overline{A} \ \overline{B}$
- $\bullet \; (AB)^* = B^*A^*$
- Trace: for square matrices $Tr(A) = \sum_{i} A_{i,i}$
 - Linear: Tr(aA + bB) = a Tr A + b Tr B
 - Cyclicity property: Tr(AB) = Tr(BA), Tr(ABC) = Tr(BCA),...

Matrix Classes

- Diagonal matrix: square matrix with non-zero elements on diagonal only: $A_{i,j} = a_i \delta_{i,j}$ or $A = \text{Diag}(a_1, a_2, ...)$
- Identity matrix I: diagonal matrix with all 1's on the diagonal: $I_{i,j} = \delta_{i,j}$
- Scalar matrix: $A = a\mathbf{I}$
- Hermitian matrix: $A = A^*$
- Positive semi-definite (PSD) matrix: a matrix that has square root(s)

$$A \ge 0 \Longleftrightarrow \exists B : A = B^*B$$

- Unitary matrix: square matrix U with $U^*U = \mathbf{I}$
- Projector: a Hermitian matrix equal to its own square: $P = P^2$.

Characterisations

- Examples of Hermitian matrices: observables, Hamiltonians
- Example of PSD matrices: density matrices; e.g. $A = |\psi\rangle\langle\psi|$: $B^* = |\psi\rangle$
- Examples of unitary matrices: any evolution operator, Pauli matrices, CNOT
- A matrix A is Hermitian iff all its expectation values are real: $\forall \psi : \langle \psi | A | \psi \rangle \in \mathbb{R}$
- A matrix A is PSD iff all its expectation values are real and non-negative: $\forall \psi : \langle \psi | A | \psi \rangle \ge 0.$
- Exercise 1 [3]: prove this last statement from the definition of PSD.
- A matrix is unitary iff its column vectors form an orthonormal basis
- For square U, $U^*U = \mathbf{I}$ implies $UU^* = \mathbf{I}$

2. The Density Matrix Formalism

Dealing with Statistical Uncertainty

- State vectors are used mainly in undergraduate QM courses and in quantum field theory.
- In real experiments, we have to deal with many uncertainties and uncontrollable factors.
- E.g. preparation of a particle in some state is never perfect. What we get is $\psi = (\cos \alpha, \sin \alpha)^T$, with some α close to the desired value, but with errors.
- How can we efficiently deal with those and other errors in QM?
- Naïve method: specify distribution of parameters (α) or of state itself.
- That's both complicated and unnecessary. What we can measure are only expectation values, like $\langle \psi | \hat{O} | \psi \rangle$.

Dealing with Statistical Uncertainty

- Because of statistical uncertainty on ψ , expressed by the probability density $p(\psi)d\psi$, we measure $\int d\psi p(\psi) \langle \psi | \hat{O} | \psi \rangle$.
- Rewrite this as $Tr[(\int d\psi p(\psi) |\psi\rangle \langle \psi |) \hat{O}]$.
- We can calculate all expectation values, once we know the matrix

$$\int d\psi \, p(\psi) |\psi\rangle \langle \psi|.$$

- Hence, this is "the" state! We call it the *density matrix* (cf. probability density). Usual symbol ρ .
- Exercise 2 [2]: Prove that a density matrix is PSD and has trace 1.

Dealing with Statistical Uncertainty

- A set of state vectors ψ_i with given probabilities p_i is called an *ensemble*.
- A density matrix is the barycenter of the ensemble.
- Different ensembles may yield the same density matrix:

{
$$p_1 = 1/2, \psi_1 = (1,0)$$
, $p_2 = 1/2, \psi_2 = (0,1)$ }
{ $p_1 = 1/2, \psi_1 = (1,1)/\sqrt{2}$, $p_2 = 1/2, \psi_2 = (1,-1)/\sqrt{2}$ }

both yield the density matrix $\rho = \mathbf{I}/2$, the maximally mixed state.

- We can never figure out which ensemble a density matrix originated from!
- A state with density matrix of the form $\rho = \psi \psi^* = |\psi\rangle \langle \psi|$ is a *pure state* and corresponds to a state vector ψ .
- Otherwise, we call the state a *mixed state* (cf. statistical mixing).

3. Tensor Products, Partial Traces and Partial Transposes

Tensor Product of Vectors

- Suppose I have 2 independent particles. Particle 1 is in state φ, and particle 2 in state θ.
- The particles taken together are then in the state ψ , which is the tensor product of ϕ and θ .
- Notation $|\psi\rangle = |\phi \otimes \theta\rangle = |\phi\rangle |\theta\rangle$.
- **E.g.** $(1,2) \otimes (3,4) = (3,4,6,8)$.
- Note the order! "The indices of particle 2 change fastest"

 $\psi = (\phi_{\uparrow}, \phi_{\downarrow}) \otimes (\theta_{\uparrow}, \theta_{\downarrow}) = (\psi_{\uparrow\uparrow}, \psi_{\uparrow\downarrow}, \psi_{\downarrow\uparrow}, \psi_{\downarrow\downarrow}), \text{ with } \psi_{ij} = \phi_i \theta_j.$

• To do the same for matrices, it is beneficial to use block matrix notation.

Block matrices

- A block matrix can be seen as being a matrix whose elements are matrices themselves (of equal size).
- Example: $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$.
- Indexing is more complicated. We need row and column indexes to single out a block, and row and column indexes to single out an element within that block. Hence the need to use *composite indices*.
- Let i, k be (row/col) indexes pointing to a block, and j, l indexes pointing within the block. Then (i, j) denotes a *composite* row index, and (k, l) a composite column index.
- The elements of a block matrix can then be denoted by $A_{(i,j),(k,l)}$, and

$$A = \sum_{i,j,k,l} A_{(i,j),(k,l)} |i\rangle |j\rangle \langle k|\langle l| = \sum_{i,j,k,l} A_{(i,j),(k,l)} |i\rangle \langle k| \otimes |j\rangle \langle l|.$$

Tensor Product of Matrices

• The tensor product, a.k.a. *Kronecker Product*, of matrices A and B, $A \otimes B$, can be represented by a block matrix with elements

$$(A \otimes B)_{(i,j),(k,l)} = A_{i,k}B_{j,l}$$

• E.g. when A is 2×2

$$A \otimes B = \left(\begin{array}{cc} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{array}\right)$$

• Trace rule: $Tr(A \otimes B) = Tr(A) Tr(B)$

Partial Trace

- To "ignore" a particle in a group of particles in a given state, "trace out" that particle.
- The *partial trace* of the *i*th factor in a tensor product is obtained by replacing the *i*th factor with its trace:

 $\operatorname{Tr}_1(A \otimes B) = \operatorname{Tr}(A) \otimes B = \operatorname{Tr}(A)B$ $\operatorname{Tr}_2(A \otimes B) = A \otimes \operatorname{Tr}(B) = \operatorname{Tr}(B)A$

• In block matrix form:

$$\operatorname{Tr}_{1}(A \otimes B) = \operatorname{Tr}_{1} \begin{pmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{pmatrix} = A_{11}B + A_{22}B$$
$$\operatorname{Tr}_{2}(A \otimes B) = \operatorname{Tr}_{2} \begin{pmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{pmatrix} = \begin{pmatrix} A_{11}\operatorname{Tr} B & A_{12}\operatorname{Tr} B \\ A_{21}\operatorname{Tr} B & A_{22}\operatorname{Tr} B \end{pmatrix}$$

Partial Trace

• By linearity of the trace, this extends to all block matrices:

$$\operatorname{Tr}_{1} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = A + D$$
$$\operatorname{Tr}_{2} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \operatorname{Tr} A & \operatorname{Tr} B \\ \operatorname{Tr} C & \operatorname{Tr} D \end{pmatrix}$$

• Equivalent definition:

 $\operatorname{Tr}((\mathbf{I} \otimes X)A) = \operatorname{Tr}(X\operatorname{Tr}_1 A), \forall X$ $\operatorname{Tr}((X \otimes \mathbf{I})A) = \operatorname{Tr}(X\operatorname{Tr}_2 A), \forall X$

• Exercise [1000]: Relate the eigenvalues of A to those of $Tr_1 A$ and $Tr_2 A$.

Partial Transpose

- Another "partial" operation on block matrices is the partial transpose.
- Take again a 2-qubit state with density matrix ρ written as a block matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$.
- The partial transpose w.r.t. the first particle: $\rho^{\Gamma_1} = \begin{pmatrix} A & C \\ B & D \end{pmatrix}$.
- The partial transpose w.r.t. the second particle: $\rho^{\Gamma_2} = \begin{pmatrix} A^T & B^T \\ C^T & D^T \end{pmatrix}$.
- The partial transpose of a state need no longer be a state; it is if ρ is separable.

4. Completely Positive (CP) maps

Operations on States

- There exist various ways of operating on states:
 - Unitary evolution: $|\psi\rangle \rightarrow U |\psi\rangle$
 - Adding particles (in a determined state): $|\psi\rangle \rightarrow |\psi\rangle \otimes |0\rangle$
 - Removing/ignoring particles: $|\psi\rangle\langle\psi| \rightarrow \text{Tr}_1 |\psi\rangle\langle\psi|$
 - Measurements: $|\psi\rangle \rightarrow \langle \psi | E_i | \psi \rangle$
 - Combinations thereof
 - Measurement outcomes may even determine the choice of subsequent operations
- Absolutely astonishing fact about QM #31: all of this can be combined into one simple formula!

Operations on States

- Every quantum operation, composed of the above basic operations, can be written as a *completely positive, trace preserving, linear map* or *CPT map* Φ acting on the density matrix: $\rho \mapsto \Phi(\rho)$
- Completely positive = positivity preserving when acting on any subset of the state's particles: because a state should remain a state.
- Non-example: The matrix transpose is a positive, trace preserving linear map, but not a completely positive one: when it acts on 1 particle of an EPR state, one gets a non-positive matrix.

Characterisation of CP(T) maps

- By dropping the trace-preservation requirement, we get a CP map.
- Any linear map can be represented using its *Choi-matrix* Φ :
 - A block matrix with $d_{in} \times d_{in}$ blocks of size $d_{out} \times d_{out}$
 - Block i,j of ${\bf \Phi}$ is given by $\Phi(|i\rangle\langle j|)$
 - $\Phi(\rho) = \sum_{i,j} \rho_{ij} \Phi(|i\rangle \langle j|) = \text{Tr}_1[\Phi(\rho^T \otimes \mathbf{I})].$
- A map Φ is CP if and only if its Choi-matrix Φ is PSD [Choi].
- Exercise 3 [8]: Prove this. Hint: operate the map on one particle of the EPR state $\psi = \sum_{i=1}^{d_{in}} |i\rangle |i\rangle$.
- Exercise 4 [5]: Find the Choi matrix of matrix transposition (for qubit states) and use it to show why transposition is not a CP map.

Characterisation of CP(T) maps

- Since the Choi-matrix is a block matrix, we can define its partial traces: $Tr_1 = Tr_{in}$ and $Tr_2 = Tr_{out}$
- Exercise 5 [4]: Show that a CP map is trace preserving if and only $\operatorname{Tr}_{out} \Phi = \mathbf{I}.$

5. Matrix Decompositions

Matrix Functions

- Problem: to calculate von Neumann entropy $S(\rho) = -\operatorname{Tr}[\rho \log \rho]$, we need to calculate functions of matrices.
- Analytic functions can be represented by (formal) power series $f(z) = \sum_{k=0} a_k z^k$.
- Since we know how to multiply matrices we can calculate $\sum_{k=0} a_k A^k$
- This (formally) defines a matrix function f(A)
- Example: $\exp(A) = \sum_{k=0} A^k / k!$
- Series are not the most convenient way to work with matrix functions

Eigenvalues

- Many of the presented concepts get "easier" descriptions when the matrix has an eigenvalue decomposition.
- Eigenvalue/eigenvector: $Ax = \lambda x$, $det(A \lambda I) = 0$.
- Stack $x^{(i)}$ columnwise in matrix S, and λ_i in diagonal matrix Λ : $AS = S\Lambda$
- If S is invertible, we get $A = S\Lambda S^{-1}$
- A matrix is *diagonalisable* if there exists an invertible S such that $S^{-1}AS$ is diagonal.
- A matrix is unitarily diagonalisable if there exists a unitary U such that $U^{-1}AU = U^*AU$ is diagonal; then $A = U\Lambda U^*$.

Eigenvalues

- Theorem: A matrix *A* is unitarily diagonalisable (UD) iff the matrix is normal (*AA*^{*} = *A*^{*}*A*)
- The eigenvalue decomposition (EVD) of a normal matrix A is $A = U\Lambda U^*$
- A Hermitian matrix is UD, with real eigenvalues
- A PSD matrix is UD, with non-negative eigenvalues
- A Projector ($P = P^2$) has eigenvalues ...

Matrix Functions

- Matrix functions of Hermitian (or PSD) matrices: $f(A) = Uf(\Lambda)U^*$, where f operates entrywise on the diagonal elements (eigenvalues)
- Example: for PSD A, with $A = U \Lambda U^*$, THE square root is

$$A^{1/2} = U \operatorname{Diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, ...) U^*$$

- Matrix absolute value (or modulus): $|A| = (A^*A)^{1/2}$
- Exercise 6 [3]: For Hermitian H, express Tr(H), |H| and Tr|H| in terms of its EVD. For $A \ge 0$, what is |A|?

Singular values

- Not all square matrices are diagonalisable, and none of the non-square matrices are.
- All matrices, even the non-square ones, have a singular value decomposition (SVD), and it is essentially unique: $A = U\Sigma V^*$, where U and V are unitary and Σ is "diagonal".
- One can find U and V s.t. the diagonal elements of Σ are non-negative reals and sorted in non-ascending fashion; then the diagonal elements of Σ, σ_i(A), are the singular values of A.
- Use a computer with (Matlab, Maple, Mathematica)
- Exercise 7 [3]: show that for $A \ge 0$, $\sigma_i(A) = \lambda_i(A)$.

Singular values and Rank

- One of the ways to check invertibility of a square matrix is to inspect its singular values: A is invertible iff all σ_i(A) > 0, strictly.
- The number of non-zero singular values of *A* equals the *rank* of *A* = the number of independent column (or row) vectors of *A*.
- The density matrix of a pure state has rank 1.

Schmidt decomposition

- Tilde notation: converts a pure bipartite state vector ψ to a matrix, denoted $\tilde{\psi}$.
- For $\psi = \sum_{i=1..d_1, j=1..d_2} x_{i,j} |i\rangle |j\rangle$, $\tilde{\psi}$ is the matrix $x_{i,j}$.
- Example: 2-qubit states $\psi = (\psi_1, \psi_2, \psi_3, \psi_4)$

$ 1\rangle 1\rangle$	—	(1, 0, 0, 0)	$ 1\rangle 2\rangle = (0, 1, 0, 0)$
$ 2\rangle 1\rangle$	=	(0, 0, 1, 0)	$ 2\rangle 2\rangle = (0,0,0,1)$

• Thus
$$\tilde{\psi} = \begin{pmatrix} \psi_1 & \psi_2 \\ \psi_3 & \psi_4 \end{pmatrix}$$
.

- In general, for vectors u and v, $\widetilde{u \otimes v} = uv^T$.
- In bra-ket notation: $|u\rangle |v\rangle = |u\rangle \langle \overline{v}|$.

Schmidt decomposition

 Schmidt decomposition: one can find orthonormal bases {u_k} and {v_k} of the two systems, respectively, and non-negative Schmidt coefficients σ_k, such that

$$\psi = \sum_{k} \sigma_k |u_k\rangle |v_k\rangle$$

- Proof: The Schmidt decomposition of ψ is the SVD of the matrix $\tilde{\psi}$.
- Write $\tilde{\psi} = U\Sigma V^*$, and denote the *k*-th column vector of *U* by $|u_k\rangle$, of *V* by $|v_k\rangle$. Denote the *k*-th diagonal element of Σ by σ_k .
- Because U is unitary, the $\{|u_k\rangle\}$ are orthonormal. Same for V.

Schmidt decomposition

• Then

$$\tilde{\psi} = \sum_{k} \sigma_k |u_k\rangle \langle v_k|,$$

so that

$$\psi = \sum_{k} \sigma_k |u_k\rangle |\overline{v_k}\rangle.$$

• Product state: if $\psi = \phi \otimes \theta$, then $\tilde{\psi} = \phi \theta^T$, which has rank 1. I.e. only 1 non-zero Schmidt coefficient.

• A pure states ψ is entangled iff $\tilde{\psi}$ has rank > 1, i.e. has more than 1 non-zero Schmidt coefficients.

6. Matrix Norms

Matrix Norms

- A matrix norm |||A||| is a mapping from the space of matrices to \mathbb{R}_+ obeying:
 - |||A||| = 0 iff A = 0
 - Homogeneous: |||zA||| = |z||||A|||
 - Triangle inequality: $|||A + B||| \le |||A||| + |||B|||$
 - Submultiplicative: $|||AB||| \le |||A||| |||B|||$
- Of particular interest are the unitarily invariant (UI) matrix norms: |||UAV||| = |||A|||, i.e. they depend only on $\sigma(A)$

UI Matrix Norms

- Operator norm: $||A|| = ||A||_{\infty} = \sigma_1(A)$, largest singular value
- Trace norm: $||A||_{\text{Tr}} = ||A||_1 = \sum_{i=1}^n \sigma_i(A) = \text{Tr} |A|$
- Frobenius or Hilbert-Schmidt norm: $||A||_2 = (\sum_{i=1}^n \sigma_i^2(A))^{1/2} = (\text{Tr } |A|^2)^{1/2} = (\sum_{i,j} |A_{i,j}|^2)^{1/2}$
- Schatten *q*-norms: $||A||_q = (\sum_{i=1}^n \sigma_i^q(A))^{1/q} = (\text{Tr } |A|^q)^{1/q}$

Matrix norms in QIT

- Matrix norms are important in QIT for many reasons
- A Schatten norm of a state is a measure of its **purity**: it is 1 for pure states, and strictly less than 1 for mixed states. Minimal for maximally mixed state.
- Exercise 8 [2]: calculate the Schatten *q*-norm of the *d*-dimensional maximally mixed state I_d/d .
- The entanglement measure "negativity" is defined as the trace norm of the partial transpose of a bipartite state: $N = ||\rho^{\Gamma}||_1 = \text{Tr} |\rho^{\Gamma}|$.
- Exercise 9 [3]: Show that N is equal to 1 minus 2 times the sum of the negative eigenvalues of ρ^Γ.
- Matrix norms of $\rho \sigma$ can be used as a distance measure between states: the states are equal iff their difference has zero norm.

Matrix norms in QIT

- \bullet The von Neumann entropy $S(\rho)$ is closely related to the Schatten q norms.
- Note the following:

$$\frac{d}{dq}x^q = x^q \log x$$

• Thus

$$x\log x = \frac{d}{dq}|_{q=1}x^q$$

and

$$S(\rho) = -\operatorname{Tr} \rho \log \rho = -\frac{d}{dq}|_{q=1} \operatorname{Tr} \rho^{q}$$

• Note that $\operatorname{Tr} \rho^q = (||\rho||_q)^q$.

Matrix norms in QIT

• Alternative relation:

$$-x\log x = \lim_{q \to 1} \frac{x - x^q}{q - 1}$$

thus

$$S(\rho) = \lim_{q \to 1} \frac{1 - \operatorname{Tr} \rho^q}{q - 1}$$

• One more tool for proving things about entropy

7. Distance measures between states

Need for State Distance Measures

- Example 1. Given an initial state ρ , and a class of maps, find the map Φ such that $\Phi(\rho)$ comes as close to a desired σ as possible.
- Example 2. L. Hardy's "Crazy Qubits": find the "best" physical (CPT) approximation of non-physical (non-CP, non-TP, non-linear) maps
- We could ask for the approximating map's output states to be as close to the hypothetical map's output states as possible.
- $\bullet \to Thus$ the need for distance measures between states.

Linear Fidelity

• Pure states: *Overlap* = *Linear Fidelity*:

 $F_L(\psi,\phi) = |\langle \psi | \phi \rangle|^2 = \text{Tr}[|\psi \rangle \langle \psi | |\phi \rangle \langle \phi |].$

This is 1 iff $|\psi\rangle\langle\psi| = |\phi\rangle\langle\phi|$, and less than 1 otherwise. It is 0 for orthogonal states.

- For mixed states, the linear fidelity $F_L(\rho, \sigma) = \text{Tr}[\rho\sigma]$ is not very useful.
- Exercise 10 [2]: why not?

Uhlmann Fidelity

• For mixed states, we can use the Uhlmann fidelity.

 $F_U(\rho,\sigma) = \operatorname{Tr} \sqrt{\rho^{1/2} \sigma \rho^{1/2}}.$

• Characterisation: $(F_U)^2$ is the linear fidelity between *purifications*

$$F_U(\rho, \sigma) = \max_{\psi, \phi} \{ |\langle \psi | \phi \rangle | :$$

$$\operatorname{Tr}_2(|\psi\rangle \langle \psi |) = \rho,$$

$$\operatorname{Tr}_2(|\phi\rangle \langle \phi |) = \sigma \}.$$

- F_U coincides with $\sqrt{F_L}$ when ρ or σ is pure.
- Bures Distance: $D_B(\rho, \sigma) = 2\sqrt{1 F_U(\rho, \sigma)}$.

Trace Distance

- *Trace Distance*: $T(\rho, \sigma) = ||\rho \sigma||_1/2$. Between 0 and 1.
- Obeys triangle inequality.
- Easier than Bures distance.
- Statistical interpretation: error probability of optimal POVM for distinguishing between ρ and σ is

 $P_e = (1 - T(\rho, \sigma))/2.$

• Behaves "erratically" under tensor powers. One can find states such that

 $T(\rho, \sigma) < T(\tau, \upsilon)$ but $T(\rho \otimes \rho, \sigma \otimes \sigma) > T(\tau \otimes \tau, \upsilon \otimes \upsilon)$

Relative Entropy

- Relative Entropy: $S(\rho || \sigma) = \operatorname{Tr} \rho(\log \rho \log \sigma)$.
- Statistical interpretation: error exponent of optimal asymmetric hypothesis test.
- Behaves nicely under tensor powers:

 $S(\rho^{\otimes n}||\sigma^{\otimes n}) = n \, S(\rho||\sigma).$

- Relative entropy does not obey triangle inequality.
- Asymmetric in its arguments.
- For pure states, either 0 (same states) or infinite (different states).
- Quantum Chernoff Distance combines the best of T and S. It is the regularisation of T w.r.t. taking tensor powers.

The Quantum Chernoff distance

• Recall: error probability of optimal POVM for distinguishing between ρ and σ is

 $P_e = (1 - T(\rho, \sigma))/2.$

• Now do the same for *n* copies of the two states: error probability of the optimal POVM is

$$P_e = (1 - T(\rho^{\otimes n}, \sigma^{\otimes n}))/2.$$

• This P_e goes down exponentially with n at a rate

$$\lim_{n\to\infty} -\frac{1}{n}\log(1-T(\rho^{\otimes n},\sigma^{\otimes n})).$$

The Quantum Chernoff distance

• A closed-form expression of the rate is given by the quantum Chernoff distance:

$$-\log Q$$
, with $Q = \min_{0 \le s \le 1} \operatorname{Tr}[\rho^s \sigma^{1-s}].$

• Just like the relative entropy, $-\log Q$ is multiplicative:

$$-\log Q(\rho^{\otimes n}, \sigma^{\otimes n}) = -n\log Q(\rho, \sigma).$$

- For pure states, $-\log Q$ attains all values between 0 and ∞ . For equal states 0, for orthogonal states ∞ .
- Does not obey triangle inequality.