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I. Introduction

There are Many Paths towards the Topological Way to
Quantum Computation

Topological Way = Alternative way to battle
quantum decoherence

Let us framework our approach to topological
Quantum information



I. Introduction

The Fault Tolerant Taxonomy

Ground-State
Properties




III.Quantum Error Correction

Lower bound on the accuracy threshold

CNOT L-exRec

Lok E = E\z 0 {Z}\=1 E

: [0 —.’/. e i) .—.2 re :

A.good gadget (oqe i o : =l |
with sparse faults) is o)A, W7 |
correct (simulates the | .. | |
ideal gate accurately). E oy ]
B —A, el W—{A, re| |

: [0 — E}\: 0 — E}\:w :

: | —~I “"_*'/, :

For each of the level-1 extended Rectangles in a universal set, e.g. for the
[[7,1,3]] (Steane) code, we can count the number of pairs of malignant
locations; the CNOT 1-exRec dominates the threshold estimate. \We find a
rigorous lower bound on the accuracy threshold for adversarial
independent stochastic noise:

& >2.73 % 105

(assuming parallelism, fresh ancillas, nonlocal gates, fast measurements,
fast and accurate classical processing, no leakage).
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III.Quantum Error Correction

*Bad News: the threshold is very small

*Good News: Fault-Tolerant Qomputation
is possible

Caution: the proof is constructive, there could be better thresholds

12



III.Quantum Error Correction

A realization of quantum error correction

J. Chiaverini et al., [Nature 432, 602-605 (2004)] implemented a three-qubit
quantum repetition code using trapped ions. They prepared the encoded
\w)=al|0)+b|1) state, simulated noise that flips each qubit with probability
g, measured the error syndrome, and corrected the error.

The probability  of an encoded

error was found to be ""’:2:@'@ OO &
2 o L O-G+-EOH QOGS
P=c+26|ab| ¢ e 11
Jg ® -{E O ’IE}_®"'®‘"®" o
... l.e., quadratic in « State> Spin a ~, Spin Error Spin
preparation echo ~" echo echo
1 Encoding 2 3
-+ - ®-(1TX?~
Realization of quantum error
o 1@ A-&-- G- OO
correction W Logle
o~ "'@_E\l 7 E""@" L Q’E
J. Chiaverini', D. Leibfried’, T. Schaetz'~, M. D. Bamett'~,
R.B.Blakestad', J. Britton', W. M. Rano’, J.D. Jost', E. KnilI’, C. Lange: W a , Spin Anclla  Spin Comection
R.Ozeri' & D. J. Wineland' i 3 echo map  echo
Decoding 4 sop 5
"Time and Frequency Divison, > Mathematical and Comprtational Sciences ——
Division, NIST, Bowlder, Colorado 80305, USA E mw Controlled-not w
* Preseat addressess Max Planck Institet fur Quantenoptik, Gardhing, Germany (T5); Physic _€>_

Depuzeneat, Univers 2y of Ougo, Danadiza, New Zealisd (M.DR)

__________________________ (As) Rotation around mds A by 0 Y Measurement 13



lll. The Summer School

Topological Quantum Computation

The Topological Way to
Battle Decoherence

Be Imaginative: Look for Alternatives
Against Decoherence

14



IV. 2-Colexes

Some relevant properties of these
Quantum Lattice Hamiltonians

*They are local: interactions between nearest-neighbour qubits
*The Ground State is Degenerate and it is the Stabilizer Code

*The Ground State Degeneracy depends on the Topology
of the Surface

*There is a Gap in the Spectrum separating the Ground State
from the rest of Excited States

15



II1.Topological Stabilizer Codes

In order to introduce the idea of a topological stabilizer
code (TSC), we must consider a topological space in which
our physical qubits are to be placed, for example a surface.

A TSC is a stabilizer code in which the generators of the
stabilizer are local and undetectable errors (or encoded
operators) are topologically nontrivial.

, = e '._ 9 oW g Undetectable

o
ey o " - '-_ '.-.I -' - .'.. N 1
Stabilizers N w2 %eRel Sl T errors
L i
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I1.Stabilizer Codes

A stabilizer code! C of length n is a subspace of the Hilbert space of
a set of n qubits. It is defined by a stabilizer group S of Pauli operators,
i.e., tensor products of Pauli matrices.

It is enough to give the generators of S. For example:

%) € C = Vse S s|)=¢)

Operators O that belong to the normalizer of S

{ZXXZI,1ZXXZ7,Z1ZXX,XZ1ZX}

leave invariant the code space C. If they do not belong to the stabilizer,
then they act non-trivially in the code subspace.

O eN(S) — Os = sO

T D. Gottesman 95
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I1.Stabilizer Codes

A encoded state can be subject to errors.

To correct them, we measure a set of generators of S. The
results of the measurement compose the syndrome of the
error. Errors can be corrected as long as the syndrome lets
us distinguish among the possible errors.

Since correctable errors always form a vector space, it is
enough to consider Pauli operators, which form a basis.

We say that a Pauli error e is undetectable if it belongs to
N(S)-S. In such a case, the syndrome says nothing:

VseS  se[y) =esiy) = ey

A set of Pauli errors E is correctable iff:

i N .
E'ENN(S)eS. s



I1.Stabilizer Codes

A stabilizer code! C of length n 1s a subspace of the Hilbert space of a
set of n qubits. It 1s defined by a stabilizer group S of Pauli operators, 1.e.,
tensor products of Pauli matrices.
I"- —_ ¥ '._|.' — ] III l,'
v) €C — Vs eS8 s|U) = U)
Some stabilizer codes are specialy suitable for quantum computation.
They allow to perform operations in a transversal and uniform way:

—
L=
LI
© [ 1—
_g L=
S LI—
L=
Ll
] ]
i
® — .mr'l
- = S =1
O — z el
) Pl — i =
/f’ - / f -
Unary gate Binary gate

1 D. Gottesman 95
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I1.Stabilizer Codes

Gate Sets

= Several codes allow the transversal implementation of

1 (1 1 . (1 0 . (L 0
b0 w-( ) a-( Y

which generate the Clifford group. This is useful for quantum
information tasks such as teleportation or entanglement distillation.

= Quantum Reed-Muller codes! are very special. They allow universal
computation through transversal gates

g ]_ U I‘ 0
~1/2 _ ) A — 2
A (0 z’“ﬁ) A (0 X)

and transversal measurements of X and Z.

= We will see how both sets of operations can be transversally implemented
in 2D and 3D topological color codes:

Color Codes = Transversality + Topology

TE. Knill et al.

20



IV. 2-Colexes

= Goal: 2-dimensional layers as quantum registers, protected
by TO. Operations on encoded qubits without selective
addressing of physical qubits.

Each register is a

topologically

1-qubit and 2-qubit protected layer.

operations. No

Register stack addressing.

21



II1.Topological Stabilizer Codes

The first example of TSC were surface codes?, which are based on Z,
homology and cohomology.

~ 1L Face Vertex Encoded operator basis
® © o ¢ operator operator =
oleole P X P X X
® © o ¢
1010 ~
® ¢ ¢ o 2 {:}4 ol I >4 2,
1010 3 3
1 qubit per link X1 X2X3X4 Z1 ZZZ3Z4 Xz Z1

S gets identified with 1-boundaries and 1-coboundaries, and N(S) with 1-cycles
and 1-cocycles.

1-coboundar
/ y

1-boundary —=——1 e " A. Yu. Kitaev 97
;I lllll II: 22




II1.Topological Stabilizer Codes

The CNot gate can be implemented transversally on
surface codes. First, its action under conjugation on

operators 1s: IX ., IX 17 722
A. . XI_ XX ZI _ ZI

Thus the transversal action of the CNot on a surface code, at
the level of operators, is simply to copy chains forward and
cochains backwards.




II1.Topological Stabilizer Codes

Finally, to see the action of the tranversal CNOT on the code, we
have to choose a Pauli basis for the encoded qubits. In the simplest
example we have a single qubit in a square surface with suitable

borders:

Clearly the action of a transversal CNot is itself a CNot gate on
the encoded qubits. However, this is the only gate we can get with
surface codes. If we want to get further, we have to go beyond

homology.
24



II1.Topological Stabilizer Codes

A surface code (Kitaev) from another perspective:




II1.Topological Stabilizer Codes

N

Single Qubit

26



IV. 2-Colexes

= A 2-colexis a trivalent 2-D lattice with 3-colored faces.

= Edges can be 3-colored accordingly. Blue edges
connect blue faces, and so on.

= The name ‘colex’ is for ‘color complex’. D-colexes of
arbitrary dimension can be defined. Their key feature is
that the whole structure of the complex is contained in the
1-skeleton and the coloring of the edges.



IV. 2-Colexes

To construct a color code from a 2-colex, we place 1 qubit
at each vertex of the lattice. The generators of S are face

operators: X1 X2 XS X.q X5 XB

i <:>5 Bf AV VLY AV,

Transversal Clifford gates should belong to N(S). We have:

HByH'=Bf KByK'=(-)?BjBf
rnZ T X P
HBYH' =By KBfK'=B?

Here v is the number of vertices in the face. If it is a
multiple of 4 for every face, then Kis in N(S). H always is.

As for the CNot gate, it is clearly in N(S) (it is a CSS codg).



IV. 2-Colexes

= In order to understand 2-D color codes, we have to introduce string

operators in the picture. As in surface codes, we play with Z, homology.
However, there is a new ingredient, color.

= A blue string is a collection of blue links

String operators

SX = XiXo XXy Xs X
§2 = 11132475 75...

(hexagonal bishop with flavor X or Z):

= Strings can have endpoints, located at faces of the same color. However, in
that case the corresponding string and face operators will not commute.
Therefore, a string operator belongs to N(S) iff the string has no endpoints.

29



IV. 2-Colexes

Continous Visualization of Color Strings

= For each color we can form a shrunk graph. The red one is:

Red faces » vertices A red face is also
Red edges » edges blue or green string
Blue and green faces » faces, faces

= Thus for each color homology works as in surface codes. The
new feature is the possibility to combine homologous blue
and red string operators of the same kind to get a green qne.



IV. 2-Colexes

= Strings can be deformed
and colors branched:

S
1
PN
"V‘
2 r

ST ~ 8§ SIST -~ Sy

Equivalent strings act equally
on the Ground State.

31



IV. 2-Colexes

Since there are two independent colors, the number of encoded qubits
should double that of a surface code. Lets check this for a surface
without boundary using the Euler characteristic for any shrunk

lattice. x=V+F_FE

Face operators are subject to the conditions

® ® ®
so that the total number of generatorsis g = 2(F + V — 2)

The number of physical qubits is 7 = 2F . Therefore the number of
encoded qubits g is twice the first Betti number of the manifold:

[[n, &k, d]] k=n_g=4_2x=2h

32



IV. 2-Colexes

In order to form a Pauli basis for the operators acting on
encoded qubits, we can use as in surface codes those string
operators (SO) that are not homologous to zero.

To this end, we need the commutation rules for SO.
Clearly SO of the same type (X or Z) always commute.

A string is made up of edges with two vertices each.
Therefore, two SO of the same color have an even number of
qubits in common an they commute.

SO of different colors can anticommute, but only if they
cross an odd number of times:

{57,821 =0

IIIWQ.. - ?
g 33



IV. 2-Colexes
String Operators

For each colored string S, there are a pair of string {SX i Sz — /
operators, S* and 54, products of Xs or Zs along S. ’

String operators either commute or anticommute.
Two string operators anticommute when they M
have different color and type and cross an odd

number of times.

As in surface codes, encoded X and Z operators can be chosen from closed string
operators which are not boundaries.

The number of encoded qubits is twice as in a surface code:

Surface code: 2 qubits Color code: 4 qubits

34



IV. 2-Colexes

= Now we can construct the desired operator basis for the encoded qubits.
In a 2-torus a possible choice is:

S—_EEX 7 Xl S;Z e Zl
g ST S3% X S—fz o
51 3 X rZ
g ng Awra XS Sl 7 Zg
Slr S3 . .
X, Z; = (1) Z; X;
Sz/) A2KS: # Encoded qubits = 2h,
S9 ' | SY h, = first Betti number

= However, if we apply the transversal H gate to such a code the resulting
encoded gate is not H. The underlying reason is that for a string S we
never have

{SbYSj} =0

35



IV. 2-Colexes

Way out:
= But we can consider surfaces with boundary. To this end,
we take a sphere, which encodes no qubit, and remove
faces.

= When a face is removed, the resulting boundary must have
its color, and only strings of that color can end at the

boundary > Toy Baryon
or

String-Net1
{TXx, Tz} =0

2 qubits 2 qubltS As desired!
36

"Wen et al.



IV. 2-Colexes
Borders and String-Nets

» Borders are big missing plaquettes. Their color is that of the erased plaquette.

= Both examples encode 2 qubits, but the second requires string-net operators.

» These have a new feature, which turns out to be crucial in orther to be able to
implement transversally the whole Clifford group:

37



IV. 2-Colexes
Look for 2-colexes with string-nets:
= We can even encode a single qubit an remove the need for holes. If we

remove a site and neighboring links and faces from a 2-colexin a
sphere, we get a triangular code:

Simplest
example

= We can construct triangular
codes of arbitrary sizes. The
vertices per face can be 4 and
8 so that K'is in N(.S).




IV. 2-Colexes

= The transversal H clearly amounts to an encoded H:

H:XHZ ﬁ:Tx_)TZ
Z — X Tz __ TX

= This is also true for K. The anticommutation properties of T imply that its
support consists of an odd number of qubits:

A

K: X —1Xz K . Tx .y £iTx Tz
4 — Z Tz __ Tz

= Therefore, the Clifford group can be implemented transversally in
triangular codes.

39



IV. 2-Colexes
Triangular Codes

* Encoded X and Z operators:

Fa

X = X®n 7 _— 70n (Z,X}=0
n = # physical qubits. X, Bf] =0, [Z, ch{] =0

= The Clifford group is implemented with global operators:
H=H%"  K=K®  A=A®"

HXH' =72 KXK'=+iXZ AIXA'=IX, AXIA'=XX

HZH' =X KZK' =2 ATZAT =ZZ, AZIA =ZI

HBFfH'=B? KBfK'=BfB? AIBfA'=IBf, ABFIA"=BfBf
TRZOgf _— pX T nRZit _ pZ ATRZAT _ RZRZ ARZTAT - pZ
HB7H'=Bf KB7K'= B} AIBFA" = BfB7, AB7IA" =BfI

40



IV. 2-Colexes
Quantum Hamiltonians and Topological Orders

«Given a Topological Stabilizer Code ‘ Strongly Correlated System with
Topological Order

e The Hamiltonian is constructed from the Code Generators:
Several Forms

Original Form for Kitaev Code

H=-) 0=-) Z,- ) X,
oes pEP veEV

41



IV. 2-Colexes

«Checkerboard Forms
Kitaev’s Code
H K — — Z B ;( — Z sz Plaquettes: Separated
PEFD pEPL
Color Codes

_ E X VA .
H c = — ( BP —|— BP ) Plaquettes: Together

42




IV. 2-Colexes

Some relevant properties of these
Quantum Lattice Hamiltonians

*They are local: interactions between nearest-neighbour qubits
*The Ground State is Degenerate and it is the Stabilizer Code

*The Ground State Degeneracy depends on the Topology
of the Surface

*There is a Gap in the Spectrum separating the Ground State
from the rest of Excited States

43



IV. 2-Colexes

= Ground State GS can be described by
applying string-net operators to the GS:

We can give an expression for the states of the logical qubit

{19):11)}
0) =[x+ B5 |1+ B))0)®"
b p

and

0)= )  BIlO)®"

string—nets

44



IV. 2-Colexes

= Excitations can be created applying
string operators to the GS:

..._‘ - ._‘ n

Sz SX |GS)
A B

Each endpoint is a quasiparticle,
a violation of a face condition.

45



= The quasiparticles that populate the system are abelian
anyons.

= When, for example, a green X excitation loops around a
blue Z excitation, the system gets a global minus sign:

:gé-'... -‘I' {t?§&’£%§ } ::()

Sc SX (82 §x |GS)) = —5Z SX |GS)
SB C A B A B

DDDO

= Note that excitations, or their braiding, play no role in
our computational model. All the operations are carried out
in the ground state of the system. 46



IV. 2-Colexes

Topological 2D Stabilizer Codes: Comparative Study

Pauli operator bases in the torus

X2} ZI

« A color code encodes twice as much logical qubits as a surface code does

We compute the topological error correcting rate O — T / d 2

for surface codes C’
s
and color codes

in several instances. ¢ 47



IV. 2-Colexes

Examples of regular codes in the torus with distance d=4

Typical values

n=32

Cs :=ng/d> =2

Optimal values

n=16

CoP =1

squares

A\

hexagons

(d)

Typical values

n=24

C. :=n./d? =
Ne/de =5

Optimal values
n=18
9
op __
C.P ==
8

48
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IV. 2-Colexes

Examples of Planar Codes encoding a single qubit
The colors in the borders represent the class of the missing face
NS
X
Z
) .
(@) (b)

Kitaev’s code Color code

49



IV. 2-Colexes

Examples of Planar Codes encoding a single qubit

\n R e o .
Typical values \ é | Optimal values
n=41, d=5 \ n=25, d=5
C =2 Cop =1
S s
/(J
n=7,d=3 n=19, d=5
C 3
op —
sp R 37, d=7

50



V. 3-Colexes

= 3-colexes are tetravalent lattices with a particular local
appearance such that their 3-cells can be 4-colored. They can
be built in any compact 3-manifold without boundary.

= Edges can be colored accordingly, as in the 2-D case.

The neigborhood The simplest 3-colex in
of a vertex. the projective space.

51



V. 3-Colexes

= 3-Colexes can be built in any closed 3-manifold:

A b-cell A by-face separates b-
and y-cells.

Tetravalent

lattice with Cell operators Face operators
4-colored . 8 Z 8
links B :®Xi B; :®Z¢
i=1 i=1

o — _ BX _ BZ # Encoded qubits = 3h1
Z ¢ zf: f h1 = first Betti number
C

52



V. 3-Colexes

= This time the generators of S are face and (3-) cell operators.

A b-cell A by-face separates b-
and y-cells.

Cell operators Face operators

8 8
BX =X X; Bf =X Z;
i=1 i=1

= Therefore there are two different homology groups in the picture, those
for 1-chains and for 2-chains. But in fact, due to Poincaré’s duality they
are the same.

53



V. 3-Colexes

= Strings are constructed as in 2-D, but now come in four colors. Branching is again
possible.

= The new feature are membranes. They come in 6 color combinations and also
have branching properties.

String operators Membrane operators
X Z
string
-®x
membrane
b-string ry-membrane

= There exist appropiate shunk complexes both for strings and for
membranes.



V. 3-Colexes

String operators Membrane operators

57 - ®
string
®
*
m .,

MX = X) X;

. membrane
b-string ry-membrane
E Excitations
@~—@
Quasiparticles are the Fluxes are the border of

endpoints of strings. membranes. They can branch.
55



V. 3-Colexes

= Now there are 3 indendent colors for strings (and similarly 3 color

combinations for membranes). Therefore, we expect that the number of
encoded qubits will be 3h . 3h2

= String and membrane operators always commute, unless they share a
color and the string crosses an odd number of times the membrane.

A Pauli basis for the operators on
the 3 qubits encoded in S2xS%




V. 3-Colexes

This system shows a topological
order with string-net and

membrane-net condensation.

Crossing string and
membrane operators with a
shared color anticommute:

”" A string-net

If a green quasiparticle
winds around a green flux,
for example, the system gets
a global minus sign.

57



V. 3-Colexes
D-Colexes

Higher dimensional D-Colexes can also be considered.

For D>3 different brane-net condensates are possible.
For any pair (p,q) with p+g=D we have a Hamiltonian

Hpq=— Z Bcz _ Z BcX
CEOP_|_]_ CECQ+1
in wich (p+1)-cell and (g+1)-cell operators are the stabilizers.

The degeneracy of the GS is 2k with

D D
k= (p ) hp = ( q ) hg h = s-th Betti number

Excitations are extended objects of p-1 and g-1 dimensions.

We can braid these excitations and get a global sign. So we
talk about branyons, for brane-like anyons.
58



V. 3-Colexes

= 3-Colexes cannot have a practical interest unless we allow
boundaries. But this is just a matter of erasing cells. As in
two dimensions, boundaries have the color of the erased cell.

= The analogue of triangular codes are tetrahedral codes,
obtained by erasing a vertex from a 3-sphere.

Simplest example

= The desired transversal K”> gate can be implemented as long

as faces have 4x vertices and cells 8x vertices.
59



V. 3-Colexes
Tetrahedral Codes

= 3-colexes cannot be constructed in our everyday 3D world keeping the locality
structure unless we allow boundaries.

» Asin 2D, borders are big erased cells and they have the color of the erased cell.

» Given a border of color ¢, strings can end at it if they are c-strings and membranes can
end at it if they are xy-strings with x and y ditferent of c.

» The analogue of triangular codes are tetrahedral codes, which encode a single qubit.

Simplest
example

» The desired transversal K'2gate can be implemented as long as faces have 4x
vertices and cells 8x vertices. The trick is analogous to that in Reed-Muller codes:

0):=J[1+B50) =3 Iv) 1) == X10) K'/?(0) = |0)
o vl
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Summanry

D-Colexes

¥

Color Codes

7N

2-D 3-D
Clifford Group Universal QC

.

Brane-Net
Condensates

61



Conclusions

D-colexes are D-valent complexes with certain coloring
properties.

Topological color codes are obtained from colexes. They
have a richer structure than surface codes.

2-colexes allow the transversal implementation of Clifford
operations.

3-colexes allow the transversal implementation of the same
gates as Reed-Muller codes.
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Conclusions

 There does not exist a fully or complete topological order in D=3 dimensions, unlike in D=2.

 There does not exist a topological order that can discriminate among all the possible
topologies in three dimensional manifolds.

« We may introduce the notion of a Topologically Complete (TC) class of quantum Hamiltonians

« We have found a class of topological orders based on the construction of certain lattices called
colexes that can distinguish between 3D-manifolds with different homology properties =
Homologically Complete (HC) class of quantum Hamiltonians.

» We could envisage the possibility of finding a quantum lattice Hamiltonian, possibly

with a non-abelian lattice gauge theory, that could distinguish between any topology in three
dimensions by means of its ground state degeneracy.

This would amount to solving the Poincaré conjecture with quantum mechanics.
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