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Outline of the Seminars
Lectures on Topological Effects in Quantum Information

I. Introduction: Gaps And All That

II. The Lieb-Mattis-Schulz Theorem

III. Non-Linear Sigma Model And Quantum Spin Chains

IV. Simple Models With topological Order In 1d: AKLT And Its Descendants

V. Topological Orders And Quantum Information

VI. Quantum Error Correction In The Stabilizer Formalism

VII. Topological Stabilizer Codes

VIII. Topological Quantum Computation
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There are Many Paths towards the Topological Way to 
Quantum Computation

Topological Way = Alternative way to battle 
                                      quantum decoherence

Let us framework our approach to topological 
Quantum information

I. Introduction
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The Fault-Tolerant Taxonomy

SelfcorrectingNon-Selfcorrecting LocalNon-Local

TopologicalNon-Topological

BraidingNon-Braiding

FusionNon-Fusion

Ground-State
Properties

Quasiparticles

I. Introduction
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III.Quantum Error Correction
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III.Quantum Error Correction

•Bad News: the threshold is very small

•Good News: Fault-Tolerant Qomputation
 is possible

Caution: the proof is constructive, there could be better thresholds
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III.Quantum Error Correction
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III. The Summer School
Topological Quantum Computation 

The Topological Way to 
Battle Decoherence

Be Imaginative: Look for Alternatives 
Against Decoherence

(Remark: Decoherence is not always bad, 
We are here because of decoherence)
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IV. 2-Colexes

Some relevant properties of these 
Quantum Lattice Hamiltonians

•They are local: interactions between nearest-neighbour qubits

•The Ground State is Degenerate and it is the Stabilizer Code

•The Ground State Degeneracy depends on the Topology 
of the Surface

•There is a Gap in the Spectrum separating the Ground State 
from the rest of Excited States
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Stabilizers
Undetectable

errors

 In order to introduce the idea of a topological stabilizer
code (TSC), we must consider a topological space in which
our physical qubits are to be placed, for example a surface.

 A TSC is a stabilizer code in which the generators of the
stabilizer are local and undetectable errors (or encoded
operators) are topologically nontrivial.

III.Topological Stabilizer Codes
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 A stabilizer code1 C of length n is a subspace of the Hilbert space of
a set of n qubits. It is defined by a stabilizer group S of Pauli operators,
i.e.,  tensor products of Pauli matrices.

 It is enough to give the generators of S. For example:

 Operators O that belong to the normalizer of S

       leave invariant the code space C. If they do not belong to the stabilizer,
then they act non-trivially in the code subspace.

{ZXXZI, IZXXZ,ZIZXX,XZIZX}

|Ãi 2 C () 8 s 2 S s|Ãi = |Ãi

1 D. Gottesman 95

O 2 N (S) () OS = SO

II.Stabilizer Codes
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 A encoded state can be subject to errors.

 To correct them, we measure a set of generators of S. The
results of the measurement compose the syndrome of the
error. Errors can be corrected as long as the syndrome lets
us distinguish among the possible errors.

 Since correctable errors always form a vector space, it is
enough to consider Pauli operators, which form a basis.

 We say that a Pauli error e is undetectable if it belongs to
N(S)-S. In such a case, the syndrome says nothing:

 A set of Pauli errors E is correctable iff:

8 s 2 S s e|Ãi = e s0|Ãi = e|Ãi

II.Stabilizer Codes
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II.Stabilizer Codes
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II.Stabilizer Codes
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IV. 2-Colexes

 Goal: 2-dimensional layers as quantum registers, protected
by TO. Operations on encoded qubits without selective
addressing of physical qubits.

TO

Register stack

Each register is a
topologically

protected layer.1-qubit and 2-qubit
operations. No

addressing.
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 The first example of TSC were surface codes1, which are based on Z2
homology and cohomology.

 S gets identified with 1-boundaries and 1-coboundaries, and N(S) with 1-cycles
and 1-cocycles.

1 A. Yu. Kitaev 97

1 qubit per link

Face

operator
1

3

2 4

Vertex

operator
1

3

2 4

Encoded operator basis

v

v

v
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1
Z

2
Z

3
Z

4
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X̄
1
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Z̄
1

Z̄
2

III.Topological Stabilizer Codes



23

 The CNot gate can be implemented transversally on
surface codes. First, its action under conjugation on
operators is:

 Thus the transversal action of the CNot on a surface code, at
the level of operators, is simply to copy chains forward and
cochains backwards.

IX ¡! IX

XI ¡! XX

IZ ¡! ZZ

ZI ¡! ZI¤ :

Target surface

Source surface ¤̂

III.Topological Stabilizer Codes
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 Finally, to see the action of the tranversal CNOT on the code, we
have to choose a Pauli basis for the encoded qubits. In the simplest
example we have a single qubit in a square surface with suitable
borders:

 Clearly the action of a transversal CNot is itself a CNot gate on
the encoded qubits. However, this is the only gate we can get with
surface codes. If we want to get further, we have to go beyond
homology.

¤̂X̄

Z̄
¤̂ X̄Î ¤̂^+= X̄X̄

III.Topological Stabilizer Codes
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III.Topological Stabilizer Codes
A surface code (Kitaev) from another perspective:
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III.Topological Stabilizer Codes

Single Qubit
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 A 2-colex is a trivalent 2-D lattice with 3-colored faces.

 Edges can be 3-colored accordingly. Blue edges
connect blue faces, and so on.

 The name ‘colex’ is for ‘color complex’. D-colexes of
arbitrary dimension can be defined. Their key feature is
that the whole structure of the complex is contained in the
1-skeleton and the coloring of the edges.

IV. 2-Colexes
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 To construct a color code from a 2-colex, we place 1 qubit
at each vertex of the lattice. The generators of S are face
operators:

 Transversal Clifford gates should belong to N(S). We have:

 Here v is the number of vertices in the face. If it is a
multiple of 4 for every face, then K is in N(S). H always is.

 As for the CNot gate, it is clearly in N(S) (it is a CSS code).

1

2

3 4

5

6

IV. 2-Colexes
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 In order to understand 2-D color codes, we have to introduce string
operators in the picture. As in surface codes, we play with Z2 homology.
However, there is a new ingredient, color.

 A blue string is a collection of blue links

     (hexagonal bishop with flavor X or Z):
 Strings can have endpoints, located at faces of the same color. However, in

that case the corresponding string and face operators will not commute.
Therefore, a string operator belongs to N(S) iff the string has no endpoints.

Endpoint String operators1 2

3
4

5 6

IV. 2-Colexes
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 For each color we can form a shrunk graph. The red one is:

 Thus for each color homology works as in surface codes. The
new feature is the possibility to combine homologous blue
and red string operators of the same kind to get a green one.

Red faces A red face is also
blue or green stringRed edges

Blue and green faces

vertices
edges
faces, faces

IV. 2-Colexes
Continous Visualization of Color Strings
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IV. 2-Colexes

 Strings can be deformed
and colors branched:

Equivalent strings act equally
on the Ground State.

1

2

g

r
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 Since there are two independent colors, the number of encoded qubits
should double that of a surface code. Lets check this for a surface
without boundary using the Euler characteristic  for any shrunk
lattice.

 Face operators are subject to the conditions

     so that the total number of generators is

 The number of physical qubits is                      . Therefore the number of
encoded qubits q is twice the first Betti number of the manifold:

Â = V + F ¡ E

f 2 r

¾
f

f 2 r

B¾
f
=

f 2 r

¾
f

g = 2(F + V ¡ 2)
n = 2E

IV. 2-Colexes

k = n ¡ g = 4¡ 2Â = 2h1[[n, k, d]]
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 In order to form a Pauli basis for the operators acting on
encoded qubits, we can use as in surface codes those string
operators (SO) that are not homologous to zero.

 To this end, we need the commutation rules for SO.

 Clearly SO of the same type (X or Z) always commute.

 A string is made up of edges with two vertices each.
Therefore, two SO of the same color have an even number of
qubits in common an they commute.

 SO of different colors can anticommute, but only if they
cross an odd number of times:

S
b

S
g

IV. 2-Colexes
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IV. 2-Colexes
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 Now we can construct the desired operator basis for the encoded qubits.
In a 2-torus a possible choice is:

 However, if we apply the transversal H gate to such a code the resulting
encoded gate is not H. The underlying reason is that for a string S we
never have

IV. 2-Colexes
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 But we can consider surfaces with boundary. To this end,
we take a sphere, which encodes no qubit, and remove
faces.

 When a face is removed, the resulting boundary must have
its color, and only strings of that color can end at the
boundary.

X̄
1

X̄
2

Z̄
1

Z̄
2

2 qubits 2 qubits
X̄

1
Z̄

1

Z̄
2

X̄
2

As desired!

T

{T X , T Z } = 0

IV. 2-Colexes
Way out:

Toy Baryon
or
String-Net1

1Wen et al.
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IV. 2-Colexes
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 We can even encode a single qubit an remove the need for holes. If we
remove a site and neighboring links and faces from a 2-colex in a
sphere, we get a triangular code:

 We can construct triangular
codes of arbitrary sizes. The
vertices per face can be 4 and
8 so that K is in N(S).

Z̄X̄

Simplest
example

IV. 2-Colexes
Look for 2-colexes with string-nets:
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 The transversal H clearly amounts to an encoded H:

 This is also true for K. The anticommutation properties of T imply that its
support consists of an odd number of qubits:

 Therefore, the Clifford group can be implemented transversally in
triangular codes.

T

TX ¡! T Z

T Z ¡! T X
H : X ¡! Z

Z ¡! X
Ĥ :

K :
Z ¡! Z

X ¡! iXZ K̂ : T X ¡! ±iT X T Z

T Z ¡! T Z

IV. 2-Colexes
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IV. 2-Colexes
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IV. 2-Colexes
•Quantum Hamiltonians and Topological Orders

•Given a Topological Stabilizer Code Strongly Correlated System with 
Topological Order

•The Hamiltonian is constructed from the Code Generators:  
 Several Forms

•Original Form for Kitaev Code
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IV. 2-Colexes

•Checkerboard Forms

•Kitaev’s Code

•Color Codes

Plaquettes: Separated

Plaquettes: Together
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IV. 2-Colexes

Some relevant properties of these 
Quantum Lattice Hamiltonians

•They are local: interactions between nearest-neighbour qubits

•The Ground State is Degenerate and it is the Stabilizer Code

•The Ground State Degeneracy depends on the Topology 
of the Surface

•There is a Gap in the Spectrum separating the Ground State 
from the rest of Excited States
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IV. 2-Colexes
 Ground State GS  can be described by

applying string-net operators to the GS:

We can give an expression for the states of the logical qubit

{|0̄i, |1̄i}
:

|1̄i := X̂ |0̄i
, Ẑ|l̄i = (¡1)^l l|l̄i
,

l = 0, 1

.

and
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IV. 2-Colexes

 Excitations can be created applying
string operators to the GS:

Each endpoint is a quasiparticle,
a violation of a face condition.

SZ
A
SX

B |GSi
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Anyons

 The quasiparticles that populate the system are abelian
anyons.

 When, for example, a green X excitation loops around a
blue Z excitation, the system gets a global minus sign:

 Note that excitations, or their braiding, play no role in
our computational model. All the operations are carried out
in the ground state of the system.

{SZ
A
, SX

C } = 0

SX
C
(SZ

A
SX

B |GSi) = ¡SZ
A
SX

B |GSi

IV. 2-Colexes



47

IV. 2-Colexes

Topological 2D Stabilizer Codes: Comparative Study 

•We compute the topological error correcting rate
 for surface codes

and color codes
in several instances.

• A color code encodes twice as much logical qubits as a surface code does

Pauli operator bases in the torus

C
s
C

c

k
c
= 2k

s
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IV. 2-Colexes

Examples of regular codes in the torus with distance d=4

n=32

squares hexagons

n=24

Typical values Typical values

n=16

Optimal values
n=18

Optimal values
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IV. 2-Colexes

Examples of  Planar Codes encoding a single qubit

Kitaev’s code Color code

The colors in the borders represent the class of the missing face
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IV. 2-Colexes

Examples of  Planar Codes encoding a single qubit

n=41, d=5

Typical values

n=25, d=5

Optimal values

Cop
s
= 1C

s
= 2

n=7, d=3
n=19, d=5

n=37, d=7
Cop

s
=
3

8
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 3-colexes are tetravalent lattices with a particular local
appearance such that their 3-cells can be 4-colored. They can
be built in any compact 3-manifold without boundary.

 Edges can be colored accordingly, as in the 2-D case.

The neigborhood
of a vertex.

The simplest 3-colex in
the projective space.

V. 3-Colexes
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V. 3-Colexes
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 This time the generators of S are face and (3-) cell operators.

 Therefore there are two different homology groups in the picture, those
for 1-chains and for 2-chains. But in fact, due to Poincaré’s duality they
are the same.

A b-cell A by-face separates b-
and y-cells.

Cell operators Face operators

1 2

4
3

1
2

34 6

7
8

V. 3-Colexes
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 Strings are constructed as in 2-D, but now come in four colors. Branching is again
possible.

 The new feature are membranes. They come in 6 color combinations and also
have branching properties.

 There exist appropiate shunk complexes both for strings and for
membranes.

String operators Membrane operators

b-string ry-membrane

membrane

string

V. 3-Colexes
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V. 3-Colexes



56

 Now there are 3 indendent colors for strings (and similarly 3 color
combinations for membranes). Therefore, we expect that the number of
encoded qubits will be

 String and membrane operators always commute, unless they share a
color and the string crosses an odd number of times the membrane.

3h1 = 3h2

M
by

S
b

{SZ
b
,MX

by} = 0 A Pauli basis for the operators on
the 3 qubits encoded in S2xS1.

V. 3-Colexes
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V. 3-Colexes
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V. 3-Colexes
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 3-Colexes cannot have a practical interest unless we allow
boundaries. But this is just a matter of erasing cells. As in
two dimensions, boundaries have the color of the erased cell.

 The analogue of triangular codes are tetrahedral codes,
obtained by erasing a vertex from a 3-sphere.

 The desired transversal K½ gate can be implemented as long
as faces have 4x vertices and cells 8x vertices.

X̄Z̄
Simplest example

V. 3-Colexes
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V. 3-Colexes
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 D-colexes are D-valent complexes with certain coloring
properties.

 Topological color codes are obtained from colexes. They
have a richer structure than surface codes.

 2-colexes allow the transversal implementation of Clifford
operations.

 3-colexes allow the transversal implementation of the same
gates as Reed-Muller codes.

Conclusions
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Conclusions

• There does not exist a fully or complete topological order in D=3 dimensions, unlike in D=2.

• There does not exist a topological order that can discriminate among all the possible
topologies in three dimensional manifolds.

• We may introduce the notion of a Topologically Complete (TC) class of quantum Hamiltonians

• We have found a class of topological orders based on the construction of certain lattices called
colexes that can distinguish between 3D-manifolds with different homology properties  =
Homologically Complete (HC) class of quantum Hamiltonians.

• We could envisage the possibility of finding a quantum lattice Hamiltonian, possibly
with a non-abelian lattice gauge theory, that could distinguish between any topology in three
dimensions by means of its ground state degeneracy.
This would amount to solving the Poincaré conjecture with quantum mechanics.
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