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Local Hamiltonians for maximally multipartite-entangled states
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We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate
eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a
number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.
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I. INTRODUCTION

The elusive features of multipartite entanglement are
attracting increasing attention lately. While in the bipar-
tite case different mathematical definitions are physically
equivalent [1-3], a unique characterization of multipartite
quantum correlations does not exist, and interesting alternative
proposals are possible [4-8] that highlight different features
of this inherently quantum phenomenon, including links with
complexity and frustration [9]. The interest in multipartite
entanglement is motivated by possible applications in quantum
enhanced tasks, but also by genuine foundational aspects.

We proposed that the multipartite entanglement of a system
of qubits can be characterized in terms of the distribution
function of bipartite entanglement (e.g., purity) over all
possible bipartitions of the qubits [10]. This led us to
formulate the notion of “maximally multipartite-entangled
states” (MMESs), as those states for which average purity
(over all balanced bipartitions) is minimal. This notion can be
extended to continuous variable systems [11,12] and unearths
applications such as quantum teamwork [11] and controlled
qubit teleportation [13].

By their very definition, MMESs exhibit very strong
and distributed nonlocal correlations. This naturally leads to
the following question: can MMESs be obtained by making
use of Hamiltonians that only involve local interactions? In the
context of spin systems (that mostly concerns us here), “local”
means both few body and nearest neighbors. For example,
it would be remarkable if one could find Hamiltonians
containing up to two-body interaction terms, whose ground
state is a MMES. If this were impossible, one could soften
the requirement and ask whether can one find Hamiltonians
containing up to two-body interaction terms, whose eigenstate
is a MMES. This is the problem we intend to tackle in the
present paper. A similar problem was analyzed in the context
of Greenberger-Horne-Zeilinger (GHZ) states [14-16].

This article is organized as follows. In Sec. II we review
the notion of a maximally multipartite-entangled state. In
Sec. III we sketch out our general strategy for the search
of MMESs as eigenstates of Hamiltonians with short-range
interactions. In Sec. IV we explicitly construct Hamiltonians
having a MMES as an eigenstate for anumber of qubits ranging
from 3 to 5. This is of interest in few-qubit applications.
We conclude with a discussion on possible perspectives and
applications.
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II. MAXIMALLY MULTIPARTITE-ENTANGLED STATES

Let a system of n qubits be in a pure state |) € H, which
is the only case we will consider henceforth. We consider a
partition (A, A) of the system § = {1,2,...,n}, made up of n4
and n; qubits, respectively, with ny +n; =n and ny < ny
with no loss of generality. The purity reads

7 = Tr (p3), (1)
where
pa = Trr (1) (Y1) 2
is the reduced density matrix of party A. Purity ranges between
1
S <m< L 3)

where the upper bound 1 is reached by unentangled, factorized
states with respect to the bipartition (A, A). On the other hand,
the lower bound is obtained for maximally bipartite-entangled
states, whose reduced density matrix is completely mixed,
1
pa = 27A11A, “)

where 1, is the identity operator on the Hilbert space of
subsystem A.

The extension of this treatment to the multipartite scenario
is based on the average purity (“potential of multipartite
entanglement”) [10,17]

1
(¥ = oo D Ta )

A |Al=na

where C; is the binomial coefficient, |A| is the cardinality
of the set A, and the sum is over balanced bipartitions n4 =
[n/2], [-] denoting the integer part. The quantity myg in Eq. (5)
measures the average bipartite entanglement over all possible
balanced bipartitions and inherits the bounds (3) (with ny =
[n/2])

1
S < mme(1¥) < 1. (6)

A maximally multipartite-entangled state [10] |¢) is a mini-
mizer of myg,

mve(lp) = 7",

w (7
my - =min{mye([V) | [¥) € Hs, (Y]¥) = 1).
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Given a quantum system whose (pure) state is a MMES, the
density matrix of each one of its subsystems A C § is as
mixed as possible (given the constraint that the total system
is in a pure state), so that the information contained in a
MMES is as distributed as possible. The average purity (5) is
related to the average linear entropy [17] and extends ideas put
forward in [7,18]. This quantity has also been used to discuss
generalized global entanglement in one-dimensional critical
systems [19,20].

We can also define perfect MMESs, obtained when the
lower bound (6) is saturated

P ©)
0 2n/21"

‘We notice that a necessary and sufficient condition for a state to
be a perfect MMES is to be maximally entangled with respect
to balanced bipartitions. On the other hand, this requirement
can be too strong; it can be shown that perfect MMESs do not
exist forn > 8 [17].

III. GENERAL STRATEGY

The problem of finding a Hamiltonian involving local (two-
body and nearest-neighbor) interactions and on-site external
magnetic fields, one of whose eigenstates is a MMES, is
nontrivial. As a matter of fact, as we explained in the
Introduction, MMESs exhibit strongly nonlocal correlations,
which, in principle, could be impossible to obtain by using only
local terms. On the other hand, it is trivial to find Hamiltonians
involving n-body interaction terms, whose ground state is
an n-qubit MMES: consider n qubits on a circle and the
Hamiltonian

H(e,K) = €eP + HH(K), 9)

where P = |¢) (g is the projection on the MMES |¢) and H+
is a Hermitian operator depending on the set of parameters
and satisfying

PHLP =0. (10)

If H- =0 and € < 0, the MMES |g) is by construction the
nondegenerate ground state for H.

This simple observation enables us to define our problem
more precisely. The Hamiltonian (9) can be separated into a
local part, in the sense defined above, and a nonlocal part, that
contains all other interaction terms:

H(G:K:) = Hloc(va:) + Hnonloc(ev’C)~ (1 1)

Our desideratum is to find a set of parameters (€,K) such that
Hoontoc(€,K0) = 0, so that the MMES |¢) is a nondegenerate
eigenstate (possibly the ground state). Clearly, this requirement
might be impossible to satisfy. In the following we will
consider some explicit examples for systems of 3, 4, and 5
qubits.
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IV. ENCODING A MMES INTO THE EIGENSTATE
OF A HAMILTONIAN

A. Three qubits

For a system of three qubits, MMES are equivalent by local
unitaries to the GHZ states,

IGE) = %0000) +[111)), (12)
1G5) = %qom) + [110)), (13)
IGE) = %0010) +(101)), (14)
IGE) = %qon) +(110)), (15)

where we have used the conventions 6¢|0) = |0) and 6%|1) =
—|1), o* being the third Pauli matrix. Since these states form
a basis of the Hilbert space of the system, the most generic
Hamiltonian can be written as

4
H =Y (&P +¢ P7)+ Hu, (16)

i=1
where

P =|G)(Gf| withi=1,23,4 (17

are the projections on the GHZ basis states and Hy is a
Hermitian operator containing terms of the form

|GG +He. withi # j. (18)

We notice that each projection can be decomposed in two terms

P=Qi£C, (19)

where Q; contains products of two Pauli matrices while C;
includes cubic terms. For example, ’Pf’ can be decomposed in
the following operators:

Q1 = 1(1000)(000] + [111)(111])
— é(ﬂ + o005 + 0505 —i—afcrf), (20)
Cy = $(|000)(111] + |111)(000])
1 X, X __X Y5XsY N

Y Y
s(0f030f —of030] —0j030] —0oj0j0y). (21)

The decomposition in Eq. (19) enables us to rewrite the
Hamiltonian (16):

4 4
H=Y (6 +€)Q+) (6 —€¢)Ci+Hu (22

i=1 i=1

We notice that cubic terms in the operators C; are absent in
Hyy, and the C;’s are orthogonal to each other:

Vi (23)

Thus, the only way to cancel such cubic terms is to impose

CCj =0

et =€ Vi (24)

1 1

This equality immediately implies that

(G |H2|Gl) = (G7 |Ha|G;) Vi, (25)
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where

=Y ool (26)

i,j,o.B

denotes a local Hamiltonian (cubic couplings are absent). As
a consequence, the state |GT) (and any equivalent state by
local unitaries) can never be the nondegenerate ground state
of H,. Indeed, let us suppose that |G]) is the ground state
of H,, whose spectrum ranges from Ey to Epa. If |G))
is also an eigenstate, then E, is degenerate, since condition
(25) must hold; if |G7) is not an eigenstate, then we must
have

Ey < <G1_|H2|G1_) < Emax 27)

and thus, as a consequence of Eq. (25), |GT) cannot be the
ground state.

This result shows that it is impossible for a three-qubit
MMES to be the nondegenerate ground state of a local
Hamiltonian. On the other hand, we now try to understand
whether there exists a condition such that |G}') is a nondegen-
erate (excited) eigenstate. The most general two-body (local)
Hamiltonian is

H, = Z (Jl’j‘al '+ Jlial (7 "+ ijol o )

i<j
+ 3 (Kyot'o] + Xyo'o] + Yo o))
i#]
b (o 1 1)+ o). @

By explicit calculation, it is possible to see that |G}) is an
eigenstate of H, if and only if the parameters satisfy the
following conditions:

3
Zh; =0, (29)
i=1
D Xij=0 for i=123, (30)
J#
> ¥;=0 for i=123, 31
J#i
T:JQ}S_szs» 5 :J%-Jfg, (32)
Wy =J —J5 hl=Kxn+Ks, (33)
hy =Kz + Kz, hy=Kp+ K. (34)

Thus, the Hamiltonian H, has 23 free parameters.

It is important to notice that the requirement that | GT) be an
eigenstate does not have any influence on the coupling between
two qubits along the z axis; actually, terms of the form /o
are the only ones that leave the GHZ state invariant.

To understand whether |GT) is degenerate is not straight-
forward. The task can be simplified by reducing the number
of free parameters satisfying Egs. (29)-(34). We consider a
model in which the qubits are coupled along the x and z axes
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FIG. 1. (Color online) Potential of multipartite entanglement of
the ground state myg(|GS)) for the Hamiltonian (35). The plateau in
the region where J and k are both positive corresponds to the constant
value myg =2/3 when the ground-state energy is —(J + 2k).
Elsewhere, the ground state corresponds to the eigenvalue J + 2k —

2 0% =20k + 4k2.

in a uniform external field acting along X,

3
Hpye=J Zai Oit1 +k2 oy —of). (35)
i=1

with periodic boundary conditions. The state |GT) corresponds
to the eigenvalue 3J, which is nondegenerate if and only if

J#0, k#0, J;é—g. (36)

As has been argued, the GHZ cannot be the ground state of
H,y: it corresponds to the first nondegenerate excited state if
the system is completely ferromagnetic (J < 0 and k < 0) or
if k > 0 and J < —k/2. In the latter case, the ground state
|GS) is not a MMES but has a large value of entanglement,
with v < 0.556 [recall that in Eq. (8) 7\’ = 1/2]. Thus, we
have found a range of values for the parameters of the local
Hamiltonian such that the two lowest energy states contain
a large amount of multipartite entanglement. Figure 1 shows
the dependence on the parameters J and k of the potential
of multipartite entanglement myg for the ground state of the
Hamiltonian (35).

B. Four qubits

In the case of four qubits it is known that perfect MMESs
do not exist [10,17,21-23]. Numerical and analytical analyses
show that the minimum of the potential of multipartite entan-
glement is E(()4) = 1/3 > 1/4. In this section we will search
for local Hamiltonians having a nondegenerate eigenstate
(possibly the ground state), corresponding to the uniform real
state [24]

|M}) = Z;,i“uc (37)

determined by the coefficients

c®=q,111,1,1,-1,-1,1,—-1,1, -1, —1,1,1, — 1}.

(38)
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This case can be treated in the same way as the three-qubit
system: we can construct a basis formed by 16 MMESs, which
will be labeled as |M}), all equivalent by local unitaries. The
generic Hamiltonian acting on the Hilbert space of the system
can be written as

16
H= Zeng + Hy, (39)

i=1

where M, is the projection on the basis state | M}). In particular
we have

M, = 5 (L +0io] + 050y +ofojo] +of0joj
+ olyozzof + alya;af +oy0{0f +05050;
+odolof + alolo} +ofaiolo) — ofatoio]
+ 005050 — 0] 0y0]0; + ofoj050;). (40)

By definition, ¢; are the expectation values on the basis states
and Hy is a (Hermitian) linear combination of the mixed tensor
products of the basis. Also in the case of four qubits, it can be
shown that the MMES (37) cannot be a nondegenerate ground
state of a local Hamiltonian. In fact, it can be verified that
the three- and four-qubit couplings present in (40) and in the
other projections M/, are absent in Hyr. As a consequence, the
expectation value of the residual Hamiltonian on a basis state
must be equal to that of the other three states. By an argument
similar to that used in the case of three qubits, we find that, if
the state (37) is the ground state of a two-body (not necessarily
local) Hamiltonian, it is at least fourfold degenerate. The
search for the most general local Hamiltonian having |M,)
as an eigenstate has led to 24 independent terms which leave
the state | M. j) invariant, except for an overall constant. They
are graphically illustrated in Fig. 2. For the meaning of the
symbols, see the caption.

The most evident characteristic of these terms is the abun-
dance of interactions coupling Pauli matrices along different
axis. The presence of these interactions is necessary if we want
the eigenstate |M,) to be nondegenerate. General conditions
for nondegeneracy are very difficult to find if the coupling
parameters are generic. Such conditions can be obtained more
easily in a simplified Hamiltonian, which depends only on a
small number of parameters. For example, we have

Hj = J(oj0f + 0303)

4
X 2 X 27 X 27 X 2 Z
+k<ala4+0203 +o0y0[ +o0j0y — E ai).
i=1

(41)

z

The Hamiltonian (41) contains interactions of the form o/ o ;
and the coupling to an external field along the z axis. We
notice that it does not couple qubits 3 and 4 to each other and,
therefore, it can be implemented on an open chain rather than
onaring. The eigenstate | M, i ), corresponding to the eigenvalue
2J, is nondegenerate if the following conditions hold:

J#£0, k#0, J;éi\/gk, J#+V3k. (42

Despite the model dependence on a small number of
parameters, it is not easy to analytically determine the position
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FIG. 2. (Color online) Graphic representation of all the terms of a
Hamiltonian having |M)) as an eigenstate. The most general Hamil-
tonian is a linear combination with arbitrary coupling constants of
these terms. In this representation, solid lines correspond to couplings
between the x components of the qubits, dotted lines between the
y components, and dashed lines between the z components. Dashed
(red) arrows from qubit i to qubit j mean 0;"0;; dotted (blue) arrows
mean o;07 ; full (green) arrows mean o;' 0. A circle around a qubit
means an interaction with an external field directed along x, a diamond
along y, a square along z. The number “—1” inside a ring of four
qubits means that the two contributions in the term must have opposite
coupling constants. The Hamiltonian (41) is made up of the first six
terms.

of the excited eigenstate | M, j) in the spectrum. Thus, we turned
to a numerical analysis: after generating 4 x 10* random
coupling parameters (uniformly distributed in [—1,1]%), we
found that the average position of the eigenvalue 2J is in the
center of the energetic band; in the best case | M, j) is the second
excited state (as it cannot be the ground state).

C. Five qubits

For a system of five qubits, where perfect MMESs do exist
[10], we proceed in the same way as in the case of four qubits.
We again choose to consider a uniform MMES [24]

1 31
MY = — k), 43
| Ms) 4ﬁ;¢k|> (43)

with
¥ =q1,1,1,1,-1,—-1,1,1, — 1, — 1,1,1,1,1,1,1,1,
-1,-1,1, -1,1,-1,-1,1,—-1,1, -1, — 1,1,1}.
(44)
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The purity of the state |M51) is minimal for any bipartition
and such a state is, therefore, a perfect MMES. As in the
case of four qubits, we can construct a basis of the Hilbert
space of the system which is formed only by MMESs. The
most general Hamiltonian acting on the Hilbert space of the
system is

32
H ="M+ Hy, (45)

i=1

where ML = |M§) (M §| is a projection and H), is an Hermitian
linear combination of the mixed tensor products of the basis
vectors.

In the case of five qubits the expressions are very
complicated. Notwithstanding this, we can apply the same
procedure followed in Sec. IVB and draw some conclu-
sions. Hamiltonians containing only two-body (not neces-
sarily local) interactions have the same zero expectation
value on each MMES of the chosen basis. Thus, none
of them can be the nondegenerate ground state of such
Hamiltonian.

We found all the elementary Hamiltonians, containing only
local interactions, for which |M§') is an eigenstate: they are
graphically represented in Fig. 3. It has been found that by
combining the first nine terms with equal coupling constants,
the eigenstate |M§) is nondegenerate. Thus, we can obtain a
nondegenerate MMES eigenstate of a local Hamiltonian for a
system of five qubits without considering mixed interactions,
as in the case of a four-qubit MMES. Moreover, we observed
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FIG. 3. (Color online) Graphic representation of all the elemen-
tary local Hamiltonians having | M) as an eigenstate. The meaning
of the symbols is analogous to that in Fig. 2.
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that removing any one of these nine terms is incompatible
with the nondegeneracy of the MMES eigenstate. A numerical
analysis based on a random sampling of 10° sets of coupling
parameters has confirmed (as in the four-qubit case) that the
MMES |M51) is placed at the center of the energetic band. It
turns out to be impossible to reach one of the low-lying excited
states (we could not do better than placing the MMES at the
14th excited level).

V. CONCLUSIONS

We have investigated whether it is possible to obtain
n-qubit MMESs (for 2 < n < 5) as eigenstates of Hamilto-
nians involving only local (few-body and nearest-neighbors)
interactions and fields. Since MMESs exhibit very distributed
nonlocal correlations, the answer to this problem is nontrivial.
We found that a MMES is the nondegenerate ground state only
for n = 2. Already for n = 3 the requirement that a MMES
be the nondegenerate ground state must be relaxed, and one
finds that MMESs can at most be the first nondegenerate
excited state. This can be interpreted as a manifestation of
entanglement frustration [9,25,26]. For n = 4 we found, in a
restricted family of Hamiltonians, a MMES only as the second
nondegenerate excited eigenstate.

Besides its foundational interest, the present work is
also motivated by few-qubit applications. Most, if not all,
practically realizable quantum tasks involve only a very small
number of qubits. The most advanced quantum applications
require that these qubits be prepared in highly entangled states
with high fidelity. One expects that more performing appli-
cations would become possible by making use of MMESs:
some examples were proposed in [11-13]. This clearly calls
for efficient methods to prepare and generate MMESs with
large yield and efficiency. For example, if a MMES were the
ground state of some Hamiltonian H, then clearly one could
engineer it by constructing H and letting the system relax
toward its ground state. However, since this is not the case,
one must consider a partial relaxation combined with control
techniques or devise alternative strategies. Another possible
mechanism for generating MMESs is dynamical rather than
static. This is obviously related to the degree of complexity of
a quantum circuit that generates MMESs using, for instance,
two-qubit gates. Future investigations will be surely devoted
to this subject.

From the above-mentioned point of view, due to the
small number of qubits considered, it would be interesting
to study the possibility of using presently realizable quantum
systems with a proper engineering of the interaction terms
for generating MMESs. Finally, the physical conditions and
strategies that would enable one to efficiently prepare states
with large entanglement, such as MMESs, can be clearly
generalized to other classes of entangled states. Work is in
progress in this direction.
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