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We propose a method to characterize and quantify multipartite entanglement for pure states. The method
hinges upon the study of the probability density function of bipartite entanglement and is tested on an ensemble
of qubits in a variety of situations. This characterization is also compared to several measures of multipartite
entanglement.

DOI: 10.1103/PhysRevA.74.042331 PACS number�s�: 03.67.Mn, 03.65.Ud

I. INTRODUCTION

Entanglement is one of the most intriguing features of
quantum mechanics. Although it is widely used in quantum
communication and information processing and plays a key
role in quantum computation, it is not fully understood. It is
deeply rooted in the linearity of quantum theory and in the
superposition principle and basically consists �for pure
states� in the impossibility of factorizing the state of the total
system in terms of states of its constituents.

The quantification of entanglement is an open and chal-
lenging problem. It is possible to give a good definition of
bipartite entanglement in terms of the von Neumann entropy
and the entanglement of formation �1�. The problem of de-
fining multipartite entanglement is more difficult �2� and no
unique definition exists: different measures capture in gen-
eral different aspects of the problem �3�. Attempts to quantify
the degree of quantum entanglement are usually formulated
in terms of its behavior under local operations/actions that
can be performed on different �possibly remote� parts of the
total system. Some recent work has focused on clarifying the
dependence of entanglement on disorder and its interplay
with chaos �4,5�, or its behavior across a phase transition
�6,7�.

The work described here is motivated by the observation
that as the size of the system increases, the number of mea-
sures �i.e., real numbers� needed to quantify multipartite en-
tanglement grows exponentially. A good definition of multi-
partite entanglement should therefore hinge upon some
statistical information about the system. We shall look at the
distribution of the purity of a subsystem over all possible
bipartitions of the total system. As a characterization of mul-
tipartite entanglement, we will not take a single real number,
but rather a whole function: the probability density of bipar-
tite entanglement between two parts of the total system. The
idea that complicated phenomena cannot be “summarized” in
a single �or a few� number�s� stems from studies on complex
systems �8� and has been considered also in the context of
quantum entanglement �9�. In short, we expect that multipar-
tite entanglement will be large when bipartite entanglement
is large and does not depend on the bipartition, namely when
its probability density is a narrow function centered at a large
value. This characterization of entanglement will be tested
on several classes of states and will be compared with sev-
eral measures of multipartite entanglement.

II. THE SYSTEM

We shall focus on a collection of n qubits. The dimension
of the Hilbert space is N=2n and the two partitions A and B
are made up of nA and nB spins �nA+nB=n�, respectively,
where the total Hilbert space reads H=HA � HB and the Hil-
bert spaces HA and HB have dimensions NA=2nA and NB
=2nB, respectively �NANB=N�. We shall consider only pure
states

��� = �
k=0

N−1

zk�k� , �1�

where �k�= �jA� � �lB�, with a bijection between k and �jA , lB�,
0� jA�NA−1, and 0� lB�NB−1. As a measure of bipartite
entanglement between A and B, we consider the participation
number

NAB = �AB
−1 , �AB = TrA�A

2 , �A = TrB� , �2�

where �= ������, and TrA �TrB� is the partial trace over the
degrees of freedom of subsystem A �B�. NAB can be viewed
as the relevant number of terms in the Schmidt decomposi-
tion of ��� �10�. The quantity nAB=log2NAB represents the
effective number of entangled spins. Clearly, for a com-
pletely separable state, TrA�A

2 =1 for all possible bipartitions,
yielding NAB=1 and nAB=0. In this sense, the participation
number can distinguish between entangled and separable
states. Moreover, �AB is directly related to the linear entropy
SL=1−�AB, which is an entanglement monotone, i.e., it is
nonincreasing under local operations �11� and classical com-
munication. In general, the quantity NAB will depend on the
bipartition, as generally entanglement will be distributed in a
different way among all possible bipartitions. Therefore, its
distribution p�NAB� will yield information about multipartite
entanglement: its mean will be a measure of the amount of
entanglement in the system, while its variance will measure
how well such entanglement is distributed, a smaller vari-
ance corresponding to a higher insensitivity to the particular
choice of the partition.

We will show that for a large class of pure states, statis-
tically sampled over the unit sphere, p�NAB� is very narrow
and has a very weak dependence on the bipartition: thus
entanglement is uniformly distributed among all possible bi-
partitions. Moreover, p�NAB� will be centered at a large
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value. These are both signatures of a very high degree of
multipartite entanglement.

By plugging Eq. �1� into Eq. �2�, one gets

�AB = �
j,j�=0

NA−1

�
l,l�=0

NB−1

zjlz̄j�lzj�l�z̄ jl�. �3�

We note that �AB=TrA�A
2 =TrB�B

2 and 1/NA�TrA�A
2 �1, with

the minimum �maximum� value attained for a completely
mixed �pure� state �A. Therefore,

1 � NAB = NBA � min	NA,NB
 . �4�

A larger value of NAB corresponds to a more entangled bi-
partition �A ,B�, the maximum value being attainable for a
balanced bipartition, i.e., when nA= �n /2� (and nB= ��n
+1� /2�), where �x� is the integer part of the real x, i.e., the
largest integer not exceeding x, and the maximum possible
entanglement is NAB=NA=2nA =�N �=�N /2� for an even
�odd� number of qubits. As anticipated, as a characterization
of multipartite entanglement, we will consider the distribu-
tion of NAB over all possible balanced bipartitions.

III. MEASURING MULTIPARTITE ENTANGLEMENT:
SOME EXAMPLES

Let us illustrate this approach on the simplest nontrivial
situation, that of three entangled qubits. If the pure state is
fully factorized, say

��� = �k� �5�

for a given 0�k�7, then the reduced density matrix �A of
every qubit is a pure state, from which

p�NAB� = �NAB,1: �6�

there is no entanglement. On the other hand, for a maximally
entangled state

��� =
1
�2

��0002� + �1112�� , �7�

one gets a completely mixed state for every partition, namely
�A= I2 /2, and thus

p�NAB� = �NAB,2, �8�

with maximum average and zero variance: there is maximum
multipartite entanglement, fully distributed among the three
qubits. The above probability distributions should be com-
pared with an intermediate case like

��� =
1
�2

��0002� + �1102�� , �9�

where the first couple of qubits are maximally entangled
�Bell state� while the third one is completely factorized. In
such a situation, one gets �1=�2= I2 /2 while �3= �1��1�, from
which

p�NAB� = �NAB,1/3 + 2�NAB,2/3. �10�

This simple application discloses the rationale behind the
quantity p�NAB� as a measure of multipartite entanglement.

When the system becomes larger, the natural extension is
toward larger �balanced� bipartitions. We stress that, besides
the comment that follows Eq. �4�, the use of balanced bipar-
titions is simply motivated by the fact that, in the thermody-
namic limit, the unbalanced ones give a small contribution,
from the statistical point of view: this can be easily under-
stood if one considers that for n large and nA�n, the bino-
mial coefficients

� n

n/2

 � � n

nA

 , �11�

so that our characterization of multipartite entanglement will
be largely dominated by balanced bipartitions. Notice also
that very unbalanced bipartitions of large systems yield neg-
ligible average entanglement �12,20�. For all these reasons, if
one considers the distribution over all bipartitions, the con-
tribution from the balanced bipartitions will dominate due to
Eq. �11�. By contrast, if only unbalanced bipartitions are con-
sidered, the results will be in general very different.

It is interesting to study the features of the characteriza-
tion of entanglement proposed in Sec. II when applied to
particular classes of states. For the Greenberger-Horne-
Zeilinger �GHZ� states �13�, we find

NAB�GHZ� = 2 �12�

for all possible bipartitions �both balanced and unbalanced�
and for an arbitrary number of qubits. Clearly, the width of
the distribution is 0, i.e., p�NAB�=�NAB,2.

For the W states �14�, we obtain

NAB�W� =
n2

nA
2 + nB

2 . �13�

This value depends only on the relative size of the two par-
titions, i.e., also in this case the width of the distribution of
bipartite entanglement is 0. Notice that, if n is even,
NAB�W�=2 for balanced bipartitions �and in this case a dis-
crimination between W and GHZ states would require the
analysis of unbalanced bipartitions�. Moreover, in the large-n
limit, NAB�W��2 also for n odd.

These results indicate that, for n large, the amount of
�multipartite� entanglement is limited both for GHZ and W
states. These states essentially share the same amount of en-
tanglement when n is large. They can be distinguished only
by considering less relevant �from the statistical point of
view� bipartitions. Moreover, for n large, NAB�W��1 for bal-
anced bipartitions. This means that also in the thermody-
namic limit the W states retain some entanglement.

IV. TYPICAL STATES

Let us now study the typical form of our characterization
of multipartite entanglement p�NAB� for a very large class of
pure states of the form �1�, sampled according to a given
statistical law. Several features of these random states are
already known in the literature �5,16,17�, but we shall focus
on those quantities that are relevant for our purpose. We
write
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��� = �
k=0

N−1

rke
i�k�k� , �14�

where �k are independent random variables with expectation

E�ei�k� = 0 �15�

and r= �r1 , . . . ,rN� is a random point with a given symmetric
distribution p�r� on the hypersphere SN−1= 	r�RN �r2=1
.
The features of these random states are readily evaluated:
one first splits �AB in two parts,

�AB = XAB + MAB, �16�

where

XAB = �
j,j�

��
l,l�

�rjlrj�lrj�l�rjl�e
i��jl−�j�l+�j�l�−�jl��, �17�

,

MAB = �
j,j�

��
l

rjl
2 rj�l

2 + �
j

�
l,l�

�rjl
2 rjl�

2 + �
j,l

rjl
4 , �18�

with j , j�=0, . . . ,NA−1, l , l�=0, . . . ,NB−1, and primes ban-
ning equal indices in the sums.

We note that the expectation value E�rjl
2 �=O�1/N�, thus

XAB and MAB are sums of at most N2 terms of order 1 /N2. By
the central limit theorem, for large N, �AB tends to a Gauss-
ian random variable with mean and variance

	AB = E��AB� ,


AB
2 = E��AB

2 � − 	AB
2 , �19�

respectively, namely it is distributed as

f��AB� =
1

�2�
AB
2 �1/2 exp�−

��AB − 	AB�2

2
AB
2 
 . �20�

From E�XAB�=0 and the independence between phases �k

and moduli rk, we get

	AB = E�MAB� = N�NA + NB − 2�E�r1
2r2

2� + NE�r1
4� �21�

and


AB
2 = E�XAB

2 � + E�MAB
2 � − 	AB

2 , �22�

where

E�XAB
2 � = 2N�NA − 1��NB − 1�E�r1

2r2
2r3

2r4
2� �23�

and

E�MAB
2 � = N�NA + NB − 2�

� ��NA + NB��N − 4� − 2�N − 5��E�r1
2r2

2r3
2r4

2�

+ 2N�NA + NB − 2��N + 2NA + 2NB − 8�E�r1
2r2

2r3
4�

+ N�N + 2NA + 2NB − 5�E�r1
4r2

4� + 4N�NA + NB

− 2�E�r1
2r2

6� + NE�r1
8� , �24�

where we used E�r1
�r2


r3
�r4

��=E�ri
�rj


rl
�rk

�� with i , j , l ,k all dis-
tinct. Notice that the above results do not depend on the
particular distribution of �k, as far as the condition �15� is

satisfied �otherwise the analysis is still valid, but Eqs.
�21�–�24� become more involved�. Our results particularize
for the case of a typical pure state �1�, sampled according to
the unitarily invariant Haar measure, where each zk�C is
chosen from an ensemble that is uniformly distributed over
the projective Hilbert space �k�zk�2=1. In such a case, in Eq.
�14�, �k� �0,2�� are independent uniformly distributed ran-
dom variables and r= �r1 , . . . ,rN� is a random point uni-
formly distributed on the hypersphere SN−1, with distribution
function

p�r� =
2N

�N/2��N

2

��1 − r2� , �25�

the prefactor being twice the inverse area of the hyperoctant
	ri�0
, with ��x� the Gamma function.

The explicit expressions of Eqs. �21�–�24� can be com-
puted through Eq. �25�, recovering the values of mean and
variance obtained by different approaches �5,16,17�. How-
ever, one can easily estimate them for large N by the follow-
ing reasoning. For large N, the marginal distributions of the
amplitudes rk become normal,

p�rk� =
2

��

��N/2�
�„�N − 1�/2…

�1 − rk
2��N−3�/2

� 2� N

2�
exp�−

N

2
rk

2
 �∀k� , �26�

with variance 1/N. One can convince oneself of the correct-
ness of the above expression just by recalling the asymptotic
behavior of the � function and expanding �1−rk

2�N/2. More-
over, it is not difficult to show that the rk’s become uncorre-
lated, hence independent. Therefore, the expectation of prod-
ucts factorizes and E�r1

2m�= �2m−1�!! /Nm, yielding

	AB =
NA + NB − 1

N
, 
AB

2 =
2

N2 . �27�

It is important to notice that when N�1, we can effectively
replace rk with its mean-square root value, rk=1/�N, from
which Eq. �27� immediately follows. In the simulation plot-
ted in Fig. 1, we used the above substitution. The fact that for
Haar distributed states the average �27� is concentrated
around a large value was already recognized by other authors
�5,16,17�.

The quantity of interest is NAB defined in Eq. �2�. From
Eq. �20�, its probability density reads

p�NAB� =
1

NAB
2 �2�
AB

2 �1/2 exp�−
�NAB

−1 − 	AB�2

2
AB
2 
 . �28�

It is interesting to compare the features of the random states
with those of other states studied in the literature. Table I
displays the average value of NAB �evaluated for n=5–12�
for GHZ states �13�, W states �14�, the generic states �14�,
and one-dimensional cluster states �18� defined as
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FIG. 1. �Color online� Number of balanced bipartitions vs NAB; p is the probability density, np=n! /nA!nB! is the number of bipartitions.
The yellow bars represent one-dimensional cluster states �see Eq. �29��, the red ones random states; the solid line is the distribution �27� and
�28�; the black arrows indicate the average �NAB�cluster. For even n �n=12 in particular�, the distribution of the random state partially hides
a peak of the corresponding cluster state distribution, centered at NAB=2nA−1=2�n/2�−1.
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��n� =
1

�2n
�

k=1

n

��0�k
z
�k+1� + �1�k� , �29�

where 
z is the third Pauli matrix and the convention 
z
�n+1�

=1 is applied. While the entanglement of the GHZ and W
states is essentially independent of n �see Eqs. �12� and �13��,
the situation is drastically different for cluster and random
states. In both cases, the average entanglement increases with
n; for n�8, the average entanglement is higher for random
states. However, it is now clear that the average E�NAB�
yields poor information on multipartite entanglement. For
this reason, it is useful to analyze the distribution of bipartite
entanglement over all possible balanced bipartitions. The re-
sults for the cluster and random states are shown in Fig. 1,
for n=5–12, where the product of the probability density p
times the number of bipartitions np=n! /nA!nB! is plotted ver-
sus NAB. Notice that the distribution function of the random
state is always peaked around 	AB

−1 in Eq. �27� and becomes
narrower for larger n, in agreement with 
AB

2 in Eq. �27�.
Notice also that the cluster state can reach higher values of
NAB �the maximum possible value being 2�n/2��, however the
fraction of bipartitions giving this result becomes smaller for
higher n. This is immediately understood if one realizes that
cluster states are designed for optimized applications and
therefore perform better in terms of specific bipartitions. On
the other hand, according to the characterization we propose,
the random states �14� are characterized by a large value of
multipartite entanglement that is roughly independent on the
bipartition. The probability density functions �28� are dis-
played in Fig. 2.

A few additional comments on random states are in order.
In the thermodynamic limit,


AB

	AB
=

�2

NA + NB − 1
= O�1/�N� �30�

and the single real number E�NAB� is sufficient to character-
ize multipartite entanglement �modulo more accurate ther-
modynamic considerations�.

In general, for finite systems, the mean bipartite entangle-
ment NAB�	AB

−1 in Eq. �27� is maximum for NA=NB=�N

�NA=NB /2=�N /2� for even �odd� n, namely for balanced
bipartitions. Notice, however, that, as we already emphasized
a number of times in this paper, although we focused on
balanced bipartitions for illustrative purposes, the main re-
sults are valid when one includes also unbalanced biparti-
tions, as, by virtue of Eq. �11�, the contribution of the bal-
anced bipartition will be exponentially dominant.

Moreover, for large N, any �symmetric� radial distribution
p�r� yields the same results �27�, the only relevant feature
being the curvature in the projective Hilbert space, forced by
the normalization r2=1 �see, for example, Eq. �25��. In this
sense, the above analysis is of general validity, being inde-
pendent of the particular choice of the ensemble.

V. COMPARISON WITH SOME MULTIPARTITE
ENTANGLEMENT MEASURES

It is interesting to compare our proposed characterization
of multipartite entanglement with some other entanglement
measures. In general, we will find that this characterization
sheds additional light on this issue and helps specify some of
the global features of multipartite entanglement in a clear-cut
way.

The quantity �15�

Q����� = 2�1 −
1

n
�

k

Tr�	k

2 
 , �31�

where �	k
 is the reduced density matrix of qubit k, i.e., �A

with A= 	k
. In our language, it corresponds to the mean
value of �AB over maximally unbalanced bipartitions,
namely

Q����� = 2�1 − Emax unbal��AB�� . �32�

For W states, this yields Q�W��0 for large n. This should be
compared with the value NAB�W�=2 �exact for even n, ap-
proximate for odd n�, obtained by considering balanced bi-
partitions of the system. As previously stressed, this means
that the W states retain some entanglement even in the ther-
modynamic limit.

TABLE I. Mean bipartite entanglement E�NAB�, analytically
evaluated according to Eqs. �12�, �13�, and �27�. The values for the
cluster state were computed by inserting Eq. �29� into the defini-
tions �2� and �3�.

n GHZ W cluster random

5 2 1.923 3.6 2.909

6 2 2 5.4 4.267

7 2 1.96 6.171 5.565

8 2 2 8.743 8.258

9 2 1.976 10.349 10.894

10 2 2 14.206 16.254

11 2 1.984 17.176 21.558

12 2 2 23.156 32.252
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FIG. 2. Probability density functions �28� vs NAB. Each curve is
labeled with the corresponding value of n �number of qubits�. The
standard deviation of the distribution is essentially independent of
n.
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Moreover, at variance with Q, the mean value of NAB can
distinguish subglobal entanglement. For instance, the state
���= ��0��0�+ �1��1�� � ��0��0�+ �1��1�� /2 cannot be distin-
guished from the GHZ state by using only Q. On the other
hand, one gets an average �NAB�=3 and a width for the dis-
tribution 
=1.55. Another interesting point is that the distri-
bution of NAB can distinguish GHZ and cluster states �actu-
ally the average is already sufficient, as can be seen from
Table I�. From these results, one can argue that the probabil-
ity density function of the participation number NAB not only
better specifies the meaning of Q but also yields additional
information.

It is also interesting to recall the behavior of the pairwise
entanglement �concurrence� and the tangle �3�. The former is
defined �for states �	i,j
 of two qubits i and j� as

Cij = max�0,�1 − �2 − �3 − �4� , �33�

where �k are the square roots of the eigenvalues �in decreas-
ing order� of the matrix �	i,j

y � 
y�	i,j


* 
y � 
y, and is there-
fore related to �AB with A= 	i , j
 �highly unbalanced biparti-
tions when N is large�. The tangle is defined as

�1
�i� = 4 det �	i
 = 2�1 − Tr�	i


2 � , �34�

where �	i
 is the reduced density matrix for qubit i. Note that
�1

�i�=2�1−�AB�, with A= 	i
, is nothing but the local version
of Q in Eq. �31�. In particular, one can consider the ratio
R�i�=�2

�i� /�1
�i� �7�, where �2

�i�=� j�iCij
2 is the sum of the squared

concurrences of qubit i with qubit j. Due to the Coffman-
Kundu-Wootters conjecture �1

�i���2
�i� �3�, one can take R�i� as

a witness of multipartite entanglement: if R�i��1, pairwise
entanglement is less relevant than multiqubit correlations. In
particular, in order to elucidate their relation with the bipar-
tite entanglement of highly unbalanced bipartitions, it is in-
teresting to apply these measures to typical states. We notice
that, in the limit of large n, one has, on the average,

E��1� = Q = 1 − 1/2n−1 � 1,

E��2� � 0. �35�

These results are interesting because they show how, in the
thermodynamic limit, pairwise entanglement is negligible for
typical states. At the same time, Eq. �35� does not yield much
information about the very structure of multipartite entangle-
ment: actually one can see that the same result can be ob-

tained for GHZ states �for arbitrary n�. In this sense, our
characterization in terms of the probability density function
corroborates and better specifies the results obtained by
studying the behavior of R.

VI. CONCLUSIONS

It is well known that an efficient way to generate states
endowed with random features is by a chaotic dynamics
�4,5�, or at the onset of a quantum phase transition �6�. In
particular, the random states �14� describe quite well states
with support on chaotic regions of phase space, before dy-
namical localization has taken place. Interestingly, other
ways have been recently proposed �17,19� in order to gener-
ate these states, in particular by operating on couples of qu-
bits with random unitaries followed by CNOT gates �19�. The
introduction of a probability density function as a measure of
multipartite entanglement paves the way for further investi-
gations of this intimate relation between entanglement and
randomness. Work is in progress in order to clarify whether
the random states can be efficiently used in quantum infor-
mation processing.

In some sense, the characterization we propose quantifies
the robustness of entanglement against all possible partial
tracing. Clearly, it is more effective for large numbers of
qubits and when relatively few moments are sufficient to
specify the distribution. We stress that although we studied
the distribution function of the inverse purity �linear entropy�
�2�, our analysis could have been performed in terms of any
other measure of bipartite entanglement, such as the entropy.

Finally, we emphasize again the main motivation behind
this work: as the number of subsystems increases, the num-
ber of measures �i.e., real numbers� needed to quantify mul-
tipartite entanglement grows exponentially. It is therefore not
surprising if a satisfactory global characterization of en-
tanglement requires the use of a function.

ACKNOWLEDGMENTS

This work is partly supported by the bilateral Italian-
Japanese Projects II04C1AF4E on “Quantum Information,
Computation and Communication” of the Italian Ministry of
Instruction, University and Research and by the European
Community through the Integrated Project EuroSQIP. G.F.
acknowledges the support and kind hospitality of the Depart-
ment of Physics of Waseda University, where part of this
work was done.

�1� W. K. Wootters, Quantum Inf. Comput. 1, 27 �2001�; C. H.
Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,
Phys. Rev. A 54, 3824 �1996�.

�2� D. Bruss, J. Math. Phys. 43, 4237 �2002�.
�3� V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,

052306 �2000�; A. Wong and N. Christensen, ibid. 63, 044301
�2001�; D. A. Meyer and N. R. Wallach, J. Math. Phys. 43,
4273 �2002�.

�4� J. N. Bandyopadhyay and A. Lakshminarayan, Phys. Rev. Lett.
89, 060402 �2002�; S. Montangero, G. Benenti, and R. Fazio,
ibid. 91, 187901 �2003�; S. Bettelli and D. L. Shepelyansky,
Phys. Rev. A 67, 054303 �2003�; A. J. Scott and C. M. Caves,
J. Phys. A 36, 9553 �2003�; L. F. Santos, G. Rigolin, and C. O.
Escobar, Phys. Rev. A 69, 042304 �2004�; N. Lambert, C.
Emary, and T. Brandes, Phys. Rev. Lett. 92, 073602 �2004�; C.
Mejia-Monasterio, G. Benenti, G. G. Carlo, and G. Casati,

FACCHI, FLORIO, AND PASCAZIO PHYSICAL REVIEW A 74, 042331 �2006�

042331-6



Phys. Rev. A 71, 062324 �2005�.
�5� A. J. Scott and C. M. Caves, J. Phys. A 36, 9553 �2003�.
�6� A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature �Lon-

don� 416, 609 �2002�; T. J. Osborne and M. A. Nielsen, Phys.
Rev. A 66, 032110 �2002�; I. Bose and E. Chattopadhyay, ibid.
66, 062320 �2002�; G. Vidal, J. I. Latorre, E. Rico, and A.
Kitaev, Phys. Rev. Lett. 90, 227902 �2003�; U. Glaser, H.
Büttner, and H. Fehske, Phys. Rev. A 68, 032318 �2003�; S. J.
Gu, H. Q. Lin, and Y. Q. Li, ibid. 68, 042330 �2003�; L.
Amico, A. Osterloh, F. Plastina, R. Fazio, and G. M. Palma,
ibid. 69, 022304 �2004�; V. E. Korepin, Phys. Rev. Lett. 92,
096402 �2004�; J. Vidal, G. Palacios, and R. Mosseri, Phys.
Rev. A 69, 022107 �2004�; F. Verstraete, M. Popp, and J. I.
Cirac, Phys. Rev. Lett. 92, 027901 �2004�.

�7� T. Roscilde, P. Verrucchi, A. Fubini, S. Haas, and V. Tognetti,
Phys. Rev. Lett. 93, 167203 �2004�; 94, 147208 �2005�.

�8� G. Parisi, Statistical Field Theory �Addison-Wesley, New
York, 1988�.

�9� V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria,
J. Phys. A 35, 7137 �2002�.

�10� R. Grobe, K. Rzażewski, and J. H. Eberly, J. Phys. B 27, L503
�1994�; J. H. Eberly, e-print quant-ph/0508019.

�11� C. Emary, J. Phys. A 37, 8293 �2004�; A. J. Scott, Phys. Rev.

A 69, 052330 �2004�.
�12� V. M. Kendon, K. Życzkowski, and W. J. Munro, Phys. Rev. A

66, 062310 �2002�.
�13� D. M. Greenberger, M. Horne, and A. Zeilinger, Am. J. Phys.

58, 1131 �1990�.
�14� W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314

�2000�.
�15� K. Brennen, Sciences �N.Y.� 3, 619 �2003�.
�16� E. Lubkin, J. Math. Phys. 19, 1028 �1978�; S. Lloyd and H.

Pagels, Ann. Phys. �N.Y.� 188, 186 �1988�; K Życzkowski,
and H.-J. Sommers, J. Phys. A 34, 7111 �2001�; Y. Shimoni,
D. Shapira, and O. Biham, Phys. Rev. A 69, 062303 �2004�.

�17� J. Emerson, Y. S. Weinstein, M. Saraceno, S. Lloyd, and DG
Cory, Science 302, 2098 �2003�; P. Hayden, D. W. Leung, and
A. Winter, Commun. Math. Phys. 265, 95 �2006�.

�18� H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910
�2001�.

�19� R. Olivera, O. Dahlsten, and M. B. Plenio, e-print quant-ph/
0605126.

�20� However, particularly for small systems, but sometimes also
for large systems �see later�, whenever a finer resolution is
needed, unbalanced bipartitions can also be considered.

PROBABILITY-DENSITY-FUNCTION… PHYSICAL REVIEW A 74, 042331 �2006�

042331-7


