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Slovakia

Received 14 February 1997, in final form 12 May 1997

Abstract. We focus our attention on the problem of reconstruction of density operators of
quantum states from propensities, i.e. generalized quasiprobability density distributions obtained
by quantum filtering. We consider propensities obtained by filtering with pure Gaussian as well
as non-Gaussian states and we present two examples: when the filter is in a squeezed coherent
state and in a Fock state, respectively. We also show that even in the case of filtering with
statistical mixtures a complete reconstruction of a density operator of the measured quantum
state can be performed.

1. Introduction

It is well known that if all system observables (i.e. the quorum [1]) are measured precisely,
then the density operator of a quantum-mechanical system can be completely reconstructed
(i.e. the density operator can be determined uniquely based on the available data). In
principle, one can consider two different schemes for a complete reconstruction of the
density operator of the given quantum-mechanical system (in both schemes we assume an
ideal, i.e. unit-efficiency, measurement).

The first type of measurement is such that on each element of the ensemble of the
measured states only asingleobservable is measured. In particular, in the case of a quantum-
mechanical harmonic oscillator, a result of this kind of measurement is aninfinite set of
distributionsW|9〉(xθ ) of the rotated quadraturêxθ = q̂ cosθ + p̂ sinθ . Each distribution
W|9〉(xθ ) can be obtained in a measurement of asingle observablex̂θ , in which case a
detector (filter) is prepared in an eigenstate|xθ 〉 of this observable. It has been shown by
Vogel and Risken [2] that from an infinite set (in the case of the harmonic oscillator) of
the measured distributionsW|9〉(xθ ) for all values ofθ such that [0< θ 6 π ], the density
operator (and the Wigner function) can be reconstructed uniquely via a transformation
which was later identified by Raymeret al [3] to be the inverse Radon transformation.
This scheme for reconstruction of the Wigner function (the so-calledoptical homodyne
tomography method) has recently been realized experimentally by Raymer and his co-
workers [3]. In these experiments Wigner functions of a coherent state and a squeezed
vacuum state have been reconstructed from tomographic data.

In the second type of measurement asimultaneousmeasurement of two non-commuting
observables (let us sayQ andP ) is considered. In this case it is not possible to construct
a joint eigenstate of these two operators, and therefore it is inevitable that the simultaneous
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measurement of two non-commuting observables introduces additional noise (of a quantum
origin) into the measured data. This noise is associated with Heisenberg’s uncertainty
relation and it results in a specific ‘smoothing’ (equivalent to a reduction of resolution) of
the original Wigner function of the system under consideration (see [4, 5]). To describe
a process of simultaneous measurement of two non-commuting observables, Wódkiewicz
[6] (see also [7]) has proposed a formalism based on an operational probability density
distribution (also known as the propensity) which takes into account explicitly the action of
the measurement device modelled as a ‘filter’ (quantum ruler). A particular choice of the
state of the ruler samples a specific type of accessible information concerning the system,
i.e. information about the system is biased by the filtering process. The quantum-mechanical
noise induced by filtering results formally in a smoothing of the original Wigner function
of the measured state [4, 5, 8], so that the operational probability density distribution can
be expressed as a convolution of the original Wigner function and the Wigner function
of the filter state. In particular, if the filter is considered to be in its vacuum state then
the corresponding operational probability density distribution is equal to the Husimi (Q-)
function [4] defined in the modern representation by Kano [8]. TheQ-function of optical
fields has been measured experimentally by Walker and Carroll [9]. The direct experimental
measurement of the operational probability density distribution with the filter in an arbitrary
state is feasible in an eight-port experimental set-up of the type used by Nohet al [10].

As a consequence of a simultaneous measurement of non-commuting observables, the
measured distributions are fuzzy (i.e. they are equal to smoothed Wigner functions). In the
present paper we will study how the noise induced by quantum filtering can be ‘separated’
from the measured data and the density operator (Wigner function) of the measured system
can be ‘extracted’ from propensities.

In this paper we consider a reconstruction on a complete observation level [11], when
all system observables are measured, i.e. the data containing complete information about
the system are available, but the question is how to invert these data and how to separate
them from the noise induced by filtering, so that the information about the measured system
in terms of the corresponding density operator (Wigner function) can be obtained. In other
words, in this paper we are not going to apply any kind ofa posteriori estimation of density
operators (see for instance [12–14]), but we will studydeterministicinversion procedures.

2. Generalized coherent-state quasiprobabilities: propensities

Coherent states|α〉 can be defined as vacuum states|0〉 displaced by the operatorD(α, α∗)
[15]. Therefore, it is very natural to define the class of generalized coherent-state
quasiprobabilities† with the help of displacements of arbitrary states|ψ〉. The set of

† The modern form of the coherent-state quasiprobability was introduced in quantum optics in 1965 by Kano
[8] and Glauber [16]. Only later was it realized that Husimi [4] had already (in 1940) introduced a class of
positive semi-definite quasiprobabilities which contains the coherent-state quasiprobability as a special case (see
[17]). Husimi’s class of quantum distribution functions corresponds to the subclass of generalized coherent-state
quasiprobabilities where coherent states are substituted by the class of states with a minimum uncertainty product.
However, these quasiprobabilities are written in such a form that the connection with Glauber’s formalism is not
obvious (see formulae (5.6) on p 278 in [4]). The states with minimum uncertainty product correspond to the
special class of squeezed coherent states for which the squeezing axes are parallel to the coordinate axes [18, 19].
The minimum uncertainty product is not invariant with respect to rotations of the coordinate axes [20–22], but after
an appropriate choice of the coordinate axes parallel to the squeezing axes one obtains the minimum uncertainty
product for all squeezed coherent states [18, 19, 23–25]. The class of generalized coherent-state quasiprobabilities
based on squeezed states and the corresponding generalized Glauber–Sudarshan quasiprobabilities were proposed
by Yuen [19] and investigated in 1988 by Haake and Wilkens [26] (see also [27]).
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displacement operatorsD(α, α∗) forms the essential part (without phase factors) of the
Heisenberg–Weyl group in quantum mechanics. This was used to define the generalized
coherent states by the action of the Heisenberg–Weyl group to arbitrary states|ψ〉 of the
Hilbert space and, more generally, by the action of other Lie groups on states of a Hilbert
space [28, 30–32]. In this sense, the action of the set of displacement operators of the
Heisenberg–Weyl group on a complete set of states|ψ〉 of the Hilbert space makes a
foliation of the Hilbert space into orbits without intersection where each state belongs
exactly to one orbit of generalized coherent states and the class of generalized coherent-state
quasiprobabilities corresponds uniquely to the class of orbits with respect to the Heisenberg–
Weyl group [33].

Generalized coherent states form an overcomplete set of states. The well known
completeness relation for coherent states was first derived by Klauder [34] and later by
Sudarshan [35], Glauber [15] and by Cahill and Glauber [36] (see also [27, 28, 37–
39]). As in the case of coherent states, the generalized coherent states can be used for
a diagonal representation of arbitrary density operators. This leads to generalized Glauber–
Sudarshan quasiprobabilities which are in a certain sense dual to the generalized coherent-
state quasiprobabilities. The so-called Glauber–Sudarshan quasiprobability was introduced
almost simultaneously by Sudarshan [35] and Glauber [15] in 1963 (i.e. before the modern
introduction of the coherent-state quasiprobability in 1965 [8, 16]). The most general
concept of quasiprobabilities was considered by Agarwal and Wolf [37] and is presented
and developed in the monograph by Peřina [40] and in the review articles [17, 41]. The
role of the parity operator in this concept was discussed by Bishop and Vourdas [39] and by
Czirják and Benedict [42]. The Gaussian class of quasiprobabilities was analysed in detail
in [25, 27].

2.1. General formalism

An arbitrary quasiprobabilityF(q, p) associated with a density operator% can be defined
as

F(q, p) ≡ 〈%T (q, p)〉 〈· · ·〉 ≡ Trace(· · ·) (2.1)

with a ‘transition’ operatorT (q, p) of the ‘displacement’ structure [27, 36–39]:

T (q, p) = D(q, p) T (0, 0) (D(q, p))†. (2.2)

The unitary displacement operatorD(q, p) is defined as usual by

D(q, p) ≡ exp
{
− i

h̄
(qP − pQ)

}
(2.3)

whereQ and P are canonical operators satisfying the canonical commutation relation
[Q,P ] = ih̄I . The normalization of the quasiprobabilityF(q, p) is connected with the
phase-space decomposition of the unity operatorI by means of the transition operator
T (q, p), which is a consequence of its ‘displacement’ structure and requires a restriction of
its trace as follows (see [27, 36, 38, 39]):∫

dq ∧ dp F(q, p) = 1⇐⇒
∫

dq ∧ dp T (q, p) = I

〈T (q, p)〉 = 〈T (0, 0)〉 = 1

2h̄π
.

(2.4)

If we restrict ourselves to real-valued quasiprobabilitiesF(q, p) thenT (q, p) must be
a Hermitian operator and vice versa

F(q, p) = (F (q, p))∗ ⇐⇒ T (q, p) = (T (q, p))†. (2.5)
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Such a Hermitian operator with a finite trace possesses the spectral decomposition

T (0, 0) =
∞∑
k=1

λk|ψk〉〈ψk| 〈ψk|ψl〉 = δk,l λk = λ∗k

〈T (0, 0)〉 =
∞∑
k=1

λk = 1

2h̄π

(2.6)

with a countably infinite set of, possibly degenerate, real eigenvaluesλk from which at
least one must be positive, which guarantees positivity of the trace ofT (0, 0). This implies
the following general structure of a real-valued (but not necessarily positive semi-definite)
quasiprobability:

F(q, p) =
∞∑
k=1

λk〈(q, p), ψk|%|(q, p), ψk〉 (2.7)

where |(q, p), ψk〉 denotes a generalized coherent state of the Heisenberg–Weyl group
corresponding to the definition used by Perelomov [28]

|(q, p), ψ〉 ≡ D(q, p)|ψ〉. (2.8)

We will call |(q, p), ψ〉 a displaced|ψ〉-state, for example, a displaced Fock state|(q, p), n〉
[29] if |ψ〉 is a Fock state|n〉.

If |ψ〉 = |0〉 then from equation (2.1) we obtain the coherent-state quasiprobability
Q(q, p) defined as

Q(q, p) ≡ 1

2h̄π
〈0|(D(q, p))†%D(q, p)|0〉 ≡ 1

2h̄π
〈(q, p)|%|(q, p)〉 (2.9)

where |(q, p)〉 ≡ |(q, p),0〉 are coherent states parametrized by real canonical variables
(q, p). On one hand, theQ-function can be considered as a formal expression for a mean
value of the density operator in a coherent state|(q, p)〉. On the other hand, this function
has an operational meaning: it describes a result of filtering with the quantum ruler prepared
in the vacuum state|0〉 [6, 7].

One can define a generalized coherent-state quasiprobabilityQψ(q, p) by substituting
the vacuum state|0〉 in equation (2.9) by an arbitrary normalized state|ψ〉, i.e.

Qψ(q, p) ≡ 1

2h̄π
〈ψ |(D(q, p))†%D(q, p)|ψ〉 ≡ 1

2h̄π
〈(q, p), ψ |%|(q, p), ψ〉

〈ψ |ψ〉 = 1.
(2.10)

This quasiprobability distribution can be viewed as a generalization of the usual coherent-
state quasiprobability (i.e. generalization of theQ-function) when one evaluates mean values
of the density operator in a displaced state|ψ〉. Alternatively, this quasidistribution has an
operational meaning: it describes a result of filtering when the quantum ruler is in a state|ψ〉
(i.e. in the case of the eight-port homodyne measurement instead of the vacuum, the state|ψ〉
is launched into the device). Ẃodkiewicz [6] has named this operational quasiprobability
density distribution a propensity (in what follows we will use both the names, i.e. the
generalized coherent-state quasidistribution and the propensity) for the object defined by
equation (2.10).

2.2. Properties of propensities

(i) The quasiprobabilityQψ(q, p) is normalized and is positive semi-definite∫
dq ∧ dpQψ(q, p) = 1 Qψ(q, p) > 0. (2.11)
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(ii) One can consider instead of pure states|ψ〉, mixed states%f as quantum filters.
Then the corresponding propensities are given by the expression

Ff (q, p) = 1

2h̄π
〈%D(q, p)%f ((D(q, p))†〉

%f = 2h̄πTf (0, 0) = 2h̄π
∑
k

λk|ψk〉〈ψk| λk > 0.
(2.12)

As an example one can consider filtering with thermal states (see section 7).
(iii) One of the consequences of the fundamental laws of quantum mechanics is that

filtering with quantum rulers results in additional noise in the measured quasiprobability
Qψ(q, p). This ‘deterioration’ of information is intrinsically related to the fact that states
|(q, p), ψ〉 are not orthonormal, i.e. mutually shifted rulers do overlap.

(iv) Wódkiewicz has shown [6] (see also [7]) that the quasiprobability (i.e. the
propensity)Qψ(q, p) can be expressed as a phase-space ‘convolution’ (see later) of two
Wigner functions, describing the state of interest and the quantum filter. These two Wigner
functions can be expressed as

W(q, p) ≡ 〈%T0(q, p)〉 % = 2h̄π
∫

dq ∧ dpW(q, p)T0(q, p)

W(ψ)(q, p) ≡ 〈ψ |T0(q, p)|ψ〉 |ψ〉〈ψ | = 2h̄π
∫

dq ∧ dpW(ψ)(q, p)T0(q, p)

(2.13)

where the transition operatorT0(q, p) reads (see [27, 38])

T0(q, p) = exp

(
−Q ∂

∂q
− P ∂

∂p

)
δ(q)δ(p). (2.14)

From the definition ofQψ(q, p) given by equation (2.10) and with the help of the expression
(5.12) in [27]

〈T0(q
′, p′)(D(q, p)T0(q

′′, p′′)(D(q, p))†〉 = 〈T0(q
′, p′)T0(q

′′ + q, p′′ + p)〉
= 1

2h̄π
δ(q ′ − q ′′ − q)δ(p′ − p′′ − p) (2.15)

we obtain

Qψ(q, p) =
∫

dq ′ ∧ dp′W(ψ)(q
′ − q, p′ − p)W(q ′, p′). (2.16)

It is obvious that the propensity carries information about both the measured state and the
quantum filter.

(v) Marginals of quasiprobabilitiesQψ(q, p) have been considered in [6, 7]. From the
representation in equation (2.16) one easily obtains by integration overp the expression

Qψ(q) ≡
+∞∫
−∞

dpQψ(q, p) =
+∞∫
−∞

dq ′ 〈q ′ − q|ψ〉〈ψ |q ′ − q〉〈q ′|%|q ′〉 (2.17)

which is associated with the operational distribution inq. This distribution is biased by a
particular choice of the filter state.

(vi) We note that with the help of the generalized coherent states|(q, p), ψ〉 we
can define a class of generalized quasiprobabilitiesPψ(q, p) analogous to the Glauber–
Sudarshan quasiprobabilityP(q, p). Using the ‘diagonal’ representation of the density
operator% in the basis of generalized coherent states, we definePψ(q, p) as

% ≡
∫

dq ∧ dp Pψ(q, p)|(q, p), ψ〉〈(q, p), ψ |
∫

dq ∧ dp Pψ(q, p) = 1. (2.18)
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We note that the two quasiprobability distributionsQψ(q, p) andPψ(q, p) are related as
follows:

Qψ(q, p) = 1

2h̄π

∫
dq ′ ∧ dp′Qψ(q

′ − q, p′ − p)Pψ(q ′, p′). (2.19)

The kernel in this integral relation betweenQψ(q, p) and Pψ(q, p) is equal to the
generalized coherent-state quasiprobabilityQψ(q, p) for the density operator%f = |ψ〉〈ψ |.

3. Reconstruction of density operators from propensities

When measured ideally, propensitiesQψ(q, p) contain complete information about the
measured state. This information is ‘biased’ by the choice of the filter and the noise induced
by the filtering. Nevertheless, one can try to ‘separate’ the filter noise fromQψ(q, p) and
to reconstruct the density operator of the systemper se. The formal inverse transformation
between the propensity and the density operator can be written as

% = 2
∫

dq ∧ dp exp

(
q2+ p2

h̄

)
exp

(
Q
∂

∂q
+ P ∂

∂p

)
Q(q, p). (3.1)

In general, it is difficult to use this expression. The exponential function exp((q2+ p2)/h̄)

in equation (3.1) can only be considered as an analytic functional and the integrals can be
evaluated only by analytic continuation and deformation of the integration contours to the
complex planes of each of the variables(q, p) (see section 7).

A more useful inverse transformation between the propensityQψ(q, p) and the
corresponding density matrix can be obtained when the phase space is parametrized by
a pair of complex numbers(α, α∗). In this case boson operators(a, a†) are related to the
Hermitian operators(Q, P ), and (α, α∗) can be expressed in terms of the real canonical
variables(q, p) according to

α ≡ q + ip√
2h̄

α∗ ≡ q − ip√
2h̄

a ≡ Q+ iP√
2h̄

a† ≡ Q− iP√
2h̄

. (3.2)

The integration measures are related as

dq ∧ dpQψ(q, p) ≡ 1
2i dα ∧ dα∗Qψ(α, α

∗) dq ∧ dp = 2h̄ 1
2i dα ∧ dα∗

|(q, p), ψ〉 ≡ |α,ψ〉. (3.3)

Analogous terms are the related quasiprobabilitiesPψ(q, p) andPψ(α, α∗) associated with
different parametrizations of the phase space.

3.1. Reconstruction of density operator from theQ-function

The formula for the reconstruction of the density operator% from the usual coherent-state
quasiprobabilityQ(α, α∗) (i.e. from theQ-function) can be written in the ‘normal-ordered’
form [27, 38] as

% = π
{

exp

(
a†

∂

∂α∗

)
exp

(
a
∂

∂α

)
Q(α, α∗)

}
(α=α∗=0)

. (3.4)

After performing the Taylor series expansion we find (see also appendix A for the definition
of the operatorak,l)

% = π
∞∑
k=0

∞∑
l=0

a† kal

k!l!

{
∂k+l

∂α∗ k∂αl
Q(α, α∗)

}
(α=α∗=0)

≡
∞∑
k=0

∞∑
l=0

〈%ak,l〉a† kal. (3.5)
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This formula or the preceding equation (3.4) illustrate the fact that, in principle, the function
Q(α, α∗), in an arbitrarily small vicinity of the pointα = α∗ = 0, contains complete
information about the system. In other words, it is not necessary to measure theQ-function
in the whole (infinite) phase space. An equally good reconstruction might emerge from a
scheme which would allow us to measure the value of theQ-function andall its derivatives
at the origin of the phase space. This also follows from the fact that the density operator
% is determined by a countably infinite set of matrix elements, for example,〈m|%|n〉 in
the Fock-state representation(m, n = 0, 1, . . . ,∞), whereasQ(α, α∗) is a function of the
continuous variablesα andα∗. In equation (3.5), the abbreviationak,l is introduced for a
set of operators. In appendix A we show how the density operator% can be reconstructed
from the normally ordered moments〈%a† kal〉.

For completeness of the discussion we note that one can easily obtain an expression
which relates theQ-function and the density operator in the Fock basis

% = π
∞∑
m=0

∞∑
n=0

|n〉〈m|√
m!n!

{
∂m+n

∂αm∂α∗ n
exp(αα∗)Q(α, α∗)

}
(α=α∗=0)

. (3.6)

3.2. Reconstruction of the density operator from arbitrary propensities

Let us perform the Fock-state expansions of the filter state|ψ〉. If we use equation (5.4)
in [38] which relates the generalized projection operators for the displaced Fock states with
the projector|α〉〈α| we then find

Qψ(α, α
∗) ≡ 1

π
〈ψ |(D(α, α∗))†%D(α, α∗)|ψ〉

= 1

π

∞∑
m=0

∞∑
n=0

〈ψ |n〉〈α, n|%|α,m〉〈m|ψ〉

≡ Lψ
(
∂

∂α
,
∂

∂α∗

)
Q(α, α∗) (3.7)

where

Lψ

(
∂

∂α
,
∂

∂α∗

)
≡
∞∑
m=0

∞∑
n=0

〈m|ψ〉〈ψ |n〉
√
n!

m!

∂m−n

∂αm−n
Lm−nn

(
− ∂2

∂α∂α∗

)
(3.8)

andLνn(z) are associated Laguerre polynomials.
Now, it becomes clear that one has to determine the inverse of the operator in

equation (3.7) to obtain theQ-function from the propensityQψ(α, α
∗), i.e.

Q(α, α∗) =
(
Lψ

(
∂

∂α
,
∂

∂α∗

))−1

Qψ(α, α
∗). (3.9)

The reconstruction relation between the arbitrary propensity and the density operator of the
state under consideration reads

% = π
{(
Lψ

(
∂

∂α
,
∂

∂α∗

))−1

exp

(
a†

∂

∂α∗

)
exp

(
a
∂

∂α

)
Qψ(α, α

∗)
}
(α=α∗=0)

. (3.10)

Analogously, we obtain the expression for the generalized Glauber–Sudarshan
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quasiprobability

Pψ(α, α
∗) =

(
Lψ

(
− ∂

∂α
,− ∂

∂α∗

))−1

P(α, α∗)

=
〈
% exp

(
−a† ∂

∂α∗

)
exp

(
−a ∂

∂α

)〉(
Lψ

(
− ∂

∂α
,− ∂

∂α∗

))−1

δ(α, α∗). (3.11)

The formal inverse transform for the density operator% from Pψ(α, α
∗) is given by

% =
∫

1
2i dα ∧ dα∗ Pψ(α, α∗)D(α, α∗)|ψ〉〈ψ |(D(α, α∗))† (3.12)

which obviously follows from the definition ofPψ(α, α∗). Consequently, when we insert
the last expression for% into the definition of the generalized coherent-state quasiprobability
(propensity) we find

Qψ(α, α
∗) = 1

π

∫
1
2i dβ ∧ dβ∗〈ψ |(D(β − α, β∗ − α∗))†|ψ〉

×〈ψ |D(β − α, β∗ − α∗)|ψ〉Pψ(β, β∗). (3.13)

One can also relate the propensityQψ(α, α
∗) with the Glauber–Sudarshan

quasiprobabilityP(α, α∗):

Qψ(α, α
∗) =

∫
1
2i dβ ∧ dβ∗Q(ψ)(β − α, β∗ − α∗)P (β, β∗) (3.14)

whereQ(ψ)(α, α
∗) denotes the ‘usual’ coherent-state quasiprobability of the filter state|ψ〉.

The corresponding ‘dual’ expression is

Qψ(α, α
∗) =

∫
1
2i dβ ∧ dβ∗ P(ψ)(β − α, β∗ − α∗)Q(β, β∗) (3.15)

whereP(ψ)(α, α∗) denotes the Glauber–Sudarshan quasiprobability of the filter state|ψ〉.
We note that equations (3.14) and (3.15) have a form which is analogous to the Wódkiewicz
expression (2.19) for the propensity

Qψ(α, α
∗) =

∫
1
2i dβ ∧ dβ∗W(ψ)(β − α, β∗ − α∗)W(β, β∗) (3.16)

rewritten in terms of complex variables, where the density operators of the filter state and of
the considered state are both expressed by their Wigner quasiprobabilitiesW(ψ)(α, α

∗) and
W(α, α∗), respectively. Equations (3.14)–(3.16) can be used for a calculation of generalized
coherent-state quasiprobabilities of given density operators. These equations may also be
represented as convolutions, for example,

Qψ(α, α
∗) = W(ψ)(−α,−α∗) ∗W(α, α∗) (3.17)

however, with inverted signs of the arguments in the Wigner quasiprobability of the filter
state.

3.3. Comments

(i) To give an operational meaning to equation (3.8) we have to prove the existence and the
uniqueness of the inverse of the operatorLψ and to find its explicit form. Sometimes it is
possible to perform summations in equation (3.7) and to find this operator and its inverse
in a closed form. In addition to the trivial case of filtering with the vacuum state when
Lψ = 1, we derive the explicit expression forL−1

ψ when the filter state is in a squeezed
vacuum state (see section 5).
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(ii) We note that marginal distributions of the generalized coherent-state quasiprob-
abilities (propensities) can be obtained by going back from the(α, α∗)-representation to
the phase-space representation in terms of the real canonical variables(q, p). Using the
equation

∂

∂α
=
√
h̄

2

(
∂

∂q
− i

∂

∂p

)
∂

∂α∗
=
√
h̄

2

(
∂

∂q
+ i

∂

∂p

)
(3.18)

we obtain the expression for the marginal distribution associated with the propensity
Qψ(q, p) given in terms of the marginal distribution related to the ordinaryQ-function:

+∞∫
−∞

dpQψ(q, p) = L1,ψ

(
∂

∂q

) +∞∫
−∞

dpQ(q, p)

+∞∫
−∞

dq Qψ(q, p) = L2,ψ

(
∂

∂p

) +∞∫
−∞

dq Q(q, p)

(3.19)

where the two differential operatorsL1,ψ andL2,ψ are defined as

L1,ψ

(
∂

∂q

)
≡
∞∑
m=0

∞∑
n=0

〈m|ψ〉〈ψ |n〉√
m!n!

{m,n}∑
j=0

m!n!

j !(m− j)!(n− j)!

(√
h̄

2

∂

∂q

)m+n−2j

=
∞∑
m=0

∞∑
n=0

〈m|ψ〉〈ψ |n〉
√
n!

m!

(√
h̄

2

∂

∂q

)m−n
Lm−nn

(
−h̄

2

∂2

∂q2

)
(3.20)

and

L2,ψ

(
∂

∂p

)
≡
∞∑
m=0

∞∑
n=0

〈m|ψ〉〈ψ |n〉√
m!n!

in−m
{m,n}∑
j=0

m!n!

j !(m− j)!(n− j)!

(√
h̄

2

∂

∂p

)m+n−2j

.

(3.21)

(iii) Some of the formulae in this section can be easily extended to more general cases
of quasiprobabilities if one substitutes the density operator|ψ〉〈ψ | of the pure filter state
|ψ〉 by more general density operators

|ψ〉〈ψ | → %f → πT (α = 0, α∗ = 0) = 2h̄πT (q = 0, p = 0). (3.22)

In other words, when filtering by statistical mixtures, we can still make use of equation (3.7)
which relatesQψ(α, α

∗) andQ(α, α∗). Analogously equation (3.19) can be used.

4. Filtering with Fock states

Let us assume that the quantum ruler is prepared in a Fock state|1〉. The corresponding
propensity is then defined as

Q1(α, α
∗) ≡ 1

π
〈α, 1|%|α, 1〉. (4.1)

Using equations (3.7) and (3.8) we express this propensity via theQ-function as

Q1(α, α
∗) = L1

(
− ∂2

∂α∂α∗

)
Q(α, α∗) ≡

(
1+ ∂2

∂α∂α∗

)
Q(α, α∗). (4.2)
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From the general solution of the homogeneous equation (two-dimensional Helmholtz
equation) (

1+ ∂2

∂α∂α∗

)
f (α, α∗) = 0

f (α, α∗) ≡
∫
r dr ∧ dϕ f (r, ϕ)exp

(
reiϕα − r−1e−iϕα∗

) (4.3)

with an arbitrary 2π -periodic functionf (r, ϕ) of ϕ, it follows that among the eigenvalues of
the differential operatorL1 in equation (4.2) is the eigenvalue equal to zero. Consequently,
the inverse of this operator is not uniquely defined. Nevertheless, one can find an explicit
solution for this inverse operator. To do so we determine a Green functionG(α, α∗) defined
as (

1+ ∂2

∂α∂α∗

)
G(α, α∗) = δ(α, α∗). (4.4)

A particular solution of equation (4.4) (see, e.g., [43]) reads

G(α, α∗) = Y0
(
2
√
αα∗

)
(4.5)

whereY0(x) is the Neumann function with index 0 (here we adopt the notation introduced
in [44]). We note that the corresponding Bessel functionJ0(x) is a particular solution of
the following homogeneous equation:(

1+ ∂2

∂α∂α∗

)
J0
(
2
√
αα∗

) = 0 f (r, ϕ) = 1

2π
δ(r − 1). (4.6)

From equations (4.2) and (4.4) together with (4.5) it follows that

Q(α, α∗) = Y0
(
2
√
αα∗

) ∗Q1(α, α
∗)

=
∫

1
2i dβ ∧ dβ∗ Y0

(
2
√
(α − β)(α∗ − β∗) )Q1(β, β

∗). (4.7)

Using equations (3.4) we now find a reconstruction (inversion) formula for the density
operator% from Q1(α, α

∗)

% = π
{
Y0
(
2
√
αα∗

) ∗ exp

(
a†

∂

∂α∗

)
exp

(
a
∂

∂α

)
Q1(α, α

∗)
}
(α=α∗=0)

. (4.8)

With the help of the definition of the Glauber–Sudarshan quasiprobabilityP(α, α∗)

P (α, α∗) =
〈
% exp

(
−a† ∂

∂α∗

)
exp

(
−a ∂

∂α

)〉
δ(α, α∗) (4.9)

and the results presented above we find the generalized Glauber–Sudarshan quasiprobability
P1(α, α

∗),

P1(α, α
∗) =

〈
% exp

(
−a† ∂

∂α∗

)
exp

(
−a ∂

∂α

)〉
Y0
(
2
√
αα∗

)
. (4.10)

4.1. Comments

(i) Due to the fact that the Green function (see equations (4.3)–(4.5)) is not uniquely defined,
the corresponding generalized Glauber–Sudarshan quasiprobabilityP1(α, α

∗) is also not
defined uniquely. This means that one can utilize some other Green function, for example,
the Hankel functions−iH(1)

0

(
2
√
αα∗

)
or iH(2)

0

(
2
√
αα∗

)
instead of the Neumann function
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Y0
(
2
√
αα∗

)
. We stress that in spite of this ambiguity in the choice of the Green function,

the reconstructed density% operator is uniquely determined from the propensityQ1(α
∗, α).

(ii) When the quantum system is filtered by higher-excited Fock states|n〉 (n > 1) then
in order to reconstruct the density operator of the measured system, one has to determine the
inverse of a differential operator of order 2n (which is due to the presence of the Laguerre
polynomial of ordern in equations (3.7)–(3.9)). Obviously, in this case one can, in principle,
derive an inversion transformation between the propensity and the corresponding density
operator, but we do not see the way to obtain the solution in a compact analytical form.
Consequently, it would be difficult to invert data obtained in a simultaneous measurement
of the conjugate observables based on the filtering with an arbitrary Fock state.

5. Filtering with squeezed states

Let us assume that the quantum ruler is prepared in a squeezed state. In this case the
propensity given by equation (2.10) can be understood as a mean value of the density
operator in a squeezed coherent state. We therefore start this section with a brief description
of squeezed and squeezed coherent states. For technical convenience in what follows we
will consider nonunitary squeezed states defined as (see, for instance, [23–25, 46])

|0; ζ 〉 ≡ exp
(− 1

2ζa
† 2
)|0〉 = ∞∑

m=0

(−1)m
√
(2m)!

2mm!
ζm|2m〉

〈0; ζ |0; ζ 〉 = 1√
1− ζ ζ ∗

(5.1)

where ζ is a complex squeezing parameter such that|ζ | < 1. In the unitary approach
one can determine the normalized squeezed vacuum states|ζ ′〉 by the action of a unitary
squeezing operatorS(ζ ′ ∗, 0, ζ ′) onto the vacuum state|0〉 as follows:

|ζ ′〉 = S(ζ ′ ∗, 0, ζ ′)|0〉 〈ζ ′|ζ ′〉 = 1

S(ξ, η, ζ ) ≡ exp
{

1
2ξa

2+ i 1
2η(aa

† + a†a)− 1
2ζa

† 2
}

S(ζ ′ ∗, 0, ζ ′) = exp

(
−ζ
′

2

tanh|ζ ′|
|ζ ′| a† 2

)(
1

cosh|ζ ′|
) 1

2 (aa
†+a†a)

exp

(
ζ ′ ∗

2

tanh|ζ ′|
|ζ ′| a2

) (5.2)

where the complex parametersζ andζ ′ are related as (cf [27])

ζ = ζ ′ tanh|ζ ′|
|ζ ′| ζ ′ = ζ arctanh|ζ |

|ζ |
→ tanh|ζ ′| = |ζ | cosh|ζ ′| = 1√

1− |ζ |2
ζ ′

|ζ ′| =
ζ

|ζ | .
(5.3)

The equivalence (up to a normalization constant) between the action of the unitary squeezing
operatorS(ζ ′ ∗, 0, ζ ′) and the nonunitary squeezing operatorS(0, 0, ζ ) on the Fock state|0〉
can also be extended to the Fock state|1〉. Unfortunately, it does not work for higher Fock
states (the reason being that Fock states|n〉 (n > 2) are not annihilated by the operatora2).

The displacement of the squeezed vacuum states yields

D(α, α∗)|0; ζ 〉 = exp
{− 1

2(α + ζα∗)α∗
}|α + ζα∗; ζ 〉 (5.4)

where we have changed the order of action of the displacement and squeezing operator and
have used the notation|β; ζ 〉 introduced in [23]

|β; ζ 〉 ≡ exp
(
βa† − 1

2ζa
† 2
)|0〉 = ∞∑

n=0

(√
2ζ
)n

2n
√
n!
Hn

(
β√
2ζ

)
|n〉. (5.5)
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Now, we define the normalized squeezed-coherent-state quasiprobabilityQζ(α, α
∗) in the

following way (cf also [26])

Qζ(α, α
∗) ≡ 1

π

〈0; ζ |(D(α, α∗))†%D(α, α∗)|0; ζ 〉
〈0; ζ |0; ζ 〉

=
√

1− ζ ζ ∗
π

∫
1
2i dβ ∧ dβ∗ 〈0; ζ |β − α〉〈β − α|0; ζ 〉P(β, β∗). (5.6)

Here we have used the representation of the density operator% by the Glauber–Sudarshan
quasiprobabilityP(β, β∗). Taking into account〈α|a† = α∗〈α| we find for the scalar product
〈α|0; ζ 〉 the expression

〈α|0; ζ 〉 = exp
{− 1

2(α + ζα∗)α∗
}

(5.7)

and using equation (3.14) (see also [27]) we find

Qζ(α, α
∗) = exp

{
1

1− ζ ζ ∗
(

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
P(α, α∗). (5.8)

Using the results of previous sections we can express the propensityQζ(α, α
∗) via the

Q-function of the same state (cf equation (3.15)):

Qζ(α, α
∗) = 1

π

√
−1− ζ ζ ∗

ζ ζ ∗
exp

{
αα∗ + α

2

2ζ
+ α

∗ 2

2ζ ∗

}
∗Q(α, α∗)

= exp

{
1

1− ζ ζ ∗
(
ζ ζ ∗

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
Q(α, α∗). (5.9)

Comparing this equation with equations (3.7) and (5.1) we find the following identity (which
we prove in appendix B):

Lζ

(
∂

∂α
,
∂

∂α∗

)
= exp

{
1

1− ζ ζ ∗
(
ζ ζ ∗

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
=
√

1− ζ ζ ∗
∞∑
m=0

∞∑
n=0

(−1)m+nζmζ ∗ n

2m+nm!n!

×
{2m,2n}∑
j=0

(2m)!(2n)!

j !(2m− j)!(2n− j)!
∂2(m+n−j)

∂α2m−j ∂α∗ 2n−j . (5.10)

From equations (3.11), (3.9) and (5.9) we find the connection betweenPζ (α, α
∗) and

P(α, α∗),

Pζ (α, α
∗) = 1

π

√
−1− ζ ζ ∗

ζ ζ ∗
exp

{
−
(
αα∗ + α

2

2ζ
+ α

∗ 2

2ζ ∗

)}
∗ P(α, α∗)

= exp

{
− 1

1− ζ ζ ∗
(
ζ ζ ∗

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
P(α, α∗). (5.11)

Analogously we can derive two other formulae connectingPζ (α, α
∗) with the Wigner and

the Q-functions of the state under consideration. A complete list of all connections of
Qζ(α, α

∗) andPζ (α, α∗) to the usual quasiprobabilities will be given in appendix C. The
direct connection betweenQζ(α, α

∗) andPζ (α, α∗) can be obtained when we combine the
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convolution in equation (5.8) with the inverse convolution in equation (5.11), that is

Qζ(α, α
∗) = 1

π
exp

{
− (α + ζα

∗)(α∗ + ζ ∗α)
1− ζ ζ ∗

}
∗ Pζ (α, α∗)

= exp

{
1

1− ζ ζ ∗
(
∂

∂α
− ζ ∗ ∂

∂α∗

)(
∂

∂α∗
− ζ ∂

∂α

)}
Pζ (α, α

∗). (5.12)

In the case of convolutions with normalized Gaussian functions one can determine the
inverse convolutions as convolutions with normalized Gaussian functions with a changed
sign in the exponent. Therefore, the quasiprobabilitiesQ(α, α∗),W(α, α∗) and P(α, α∗)
can be expressed via the propensityQζ(α, α

∗) or the generalized Glauber–Sudarshan
quasiprobabilityPζ (α, α∗).

An explicit formula for the calculation of the generalized Glauber–Sudarshan
quasiprobabilityPζ (α, α∗) from the given density operator% can be obtained from
equations (3.11) and (5.11) as follows:

Pζ (α, α
∗) =

〈
% exp

(
−a† ∂

∂α∗

)
exp

(
−a ∂

∂α

)〉
× exp

{
− 1

1− ζ ζ ∗
(
ζ ζ ∗

∂2

∂α∂α∗
− ζ

∗

2

∂2

∂α2
− ζ

2

∂

∂α∗ 2

)}
δ(α, α∗)

=
〈
% exp

(
−a† ∂

∂α∗

)
exp

(
−a ∂

∂α

)〉
× 1

π

√
−1− ζ ζ ∗

ζ ζ ∗
exp

{
−
(
αα∗ + α

2

2ζ
+ α

∗ 2

2ζ ∗

)}
. (5.13)

With the help of the convolution (5.12) we obtain from equation (5.13) the expression

Qζ(α, α
∗) =

〈
% exp

(
−a† ∂

∂α∗

)
exp

(
−a ∂

∂α

)〉
×
√

1− ζ ζ ∗
π

exp
{−(αα∗ + 1

2ζ
∗α2+ 1

2ζα
∗ 2
)}
. (5.14)

Equations (5.13) and (5.14) are expressed in the normal-ordered form. It is not difficult to
rewrite these equation with other orderings of the creation and annihilation operators.

6. Squeezed-state propensities with squeezed filters

As an example of a propensity with the squeezed filter, in this section we evaluate the
propensity of a squeezed state filtered by the squeezed quantum rulers with the same complex
parameterζ . In this case one obtains the corresponding squeezed-state propensities by linear
symplectic argument transformations of the corresponding usual quasiprobabilities for the
unsqueezed initial state. We will consider the squeezed vacuum state|0; ζ 〉norm. In this
case the displacement with the unitary displacement operatorD(β, β∗) results in a simple
transformation of phase-space variablesα → α − β, α∗ → α∗ − β∗. Using the general
formalism presented above we easily find the propensity for the squeezed vacuum filtered
by the same squeezed vacuum as

Qζ(α, α
∗) = 1

π
exp

{
− (α + ζα

∗)(α∗ + ζ ∗α)
1− ζ ζ ∗

}
. (6.1)



644 A Wünsche and V Bǔzek

We recall that the Wigner quasiprobability for the state|0; ζ 〉norm is given by the expression

W(α, α∗) = 2

π
exp

{
−2(α + ζα∗)(α∗ + ζ ∗α)

1− ζ ζ ∗
}
. (6.2)

Here we also present the generalized Glauber–Sudarshan quasiprobabilityPζ (α, α
∗) for the

states|0; ζ 〉norm

Pζ (α, α
∗) = δ

(
α + ζα∗√

1− ζ ζ ∗ ,
α∗ + ζ ∗α√

1− ζ ζ ∗
)
= δ(α, α∗). (6.3)

It is of the same form as the usual Glauber–Sudarshan quasiprobabilityP(α, α∗) for
the vacuum state|0〉. We see that equations (6.1)–(6.3) can also be obtained from the
quasiprobabilitiesQ(α, α∗), W(α, α∗) andP(α, α∗) for the vacuum state|0〉 with the help
of the following substitution of the phase-space variables:(

α

α∗

)
→
(
α′

α′ ∗

)
= 1√

1− ζ ζ ∗
(

1, ζ

ζ ∗, 1

)(
α

α∗

)
(6.4)

which is true in the case of the usual quasiprobabilities only for the Wigner quasiprobability
W(α, α∗). The determinant of the linear transformation in equation (6.4) is equal to
unity. Therefore equation (6.4) describes a homogeneous linear canonical (symplectic)
transformation. This corresponds to a linear transformation of the boson operators(a, a†)

(S(ζ ′ ∗, 0, ζ ′))†(a, a†)S(ζ ′ ∗, 0, ζ ′) = (a, a†)
(

cosh|ζ ′| , −ζ ′ ∗ sinh|ζ ′|
|ζ ′|

−ζ ′ sinh|ζ ′|
|ζ ′| , cosh|ζ ′|

)

=
(
a − ζa†√
1− ζ ζ ∗ ,

a† − ζ ∗a√
1− ζ ζ ∗

)
S(ζ ′ ∗, 0, ζ ′) ≡ exp

(
1
2ζ
′ ∗a2− 1

2ζ
′a† 2

)
(6.5)

where we have used the connection betweenζ and ζ ′ given in equation (5.3). From here
we find the following unitary transformation of displacement operators:

(S(ζ ′ ∗, 0, ζ ′))†D(α, α∗)S(ζ ′ ∗, 0, ζ ′) = D
(
α + ζα∗√

1− ζ ζ ∗ ,
α∗ + ζ ∗α√

1− ζ ζ ∗
)

(6.6)

which is equal to a symplectic transformation (6.4) of the phase-space variables. For
a density operator% obtained from a density operator%0 by squeezing with the unitary
squeezing operatorS(ζ ′ ∗, 0, ζ ′) according to

% = S(ζ ′ ∗, 0, ζ ′)%0(S(ζ
′ ∗, 0, ζ ′))† (6.7)

one obtains for the generalized coherent-state quasiprobabilityQζ(α, α
∗)

Qζ (α, α
∗) = 1

π
〈0|(S(ζ ′ ∗, 0, ζ ′))†(D(α, α∗))†%D(α, α∗)S(ζ ′ ∗, 0, ζ ′)|0〉

= 1

π
〈0|
(
D

(
α + ζα∗√

1− ζ ζ ∗ ,
α∗ + ζ ∗α√

1− ζ ζ ∗
))†

%0D

(
α + ζα∗√

1− ζ ζ ∗ ,
α∗ + ζ ∗α√

1− ζ ζ ∗
)
|0〉

= 1

π

〈
α + ζα∗√

1− ζ ζ ∗
∣∣∣∣ %0

∣∣∣∣ α + ζα∗√
1− ζ ζ ∗

〉
. (6.8)

Thus we have proved that the generalized coherent-state quasiprobabilityQζ(α, α
∗) for the

density operator% can be obtained from the coherent-state quasiprobabilityQ(α, α) for the
density operator%0 by the argument substitutions according to equation (6.4).
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6.1. s-parametrized quasiprobabilities

It is well known that the linear interpolation between the quasiprobabilitiesQ(α, α∗) and
P(α, α∗) leads to the class ofs-ordered quasiprobabilities. Therefore we will now consider
quasiprobabilities obtained via a linear interpolation (in terms of the Fourier transforms)
betweenQζ(α, α

∗) andPζ (α, α∗) with the Wigner quasiprobability in its centre. Using the
formalism presented in [25, 27, 38] (here we set the parameterr ≡ r3 = −s) we define the
generalized class of quasiprobabilitiesFζ,(0,0,r)(α, α∗) as

Fζ,(0,0,r)(α, α
∗) ≡ 2

(1+ r)π
∞∑
n=0

(
−1− r

1+ r
)n

×〈n|(S(ζ ′ ∗, 0, ζ ′))†(D(α, α∗))†%D(α, α∗)S(ζ ′ ∗, 0, ζ ′)|n〉. (6.9)

Alternatively, if we take into account equation (6.7) we can write

Fζ,(0,0,r)(α, α
∗) = 2

(1+ r)π
∞∑
n=0

(
−1− r

1+ r
)n〈

α + ζα∗√
1− ζ ζ ∗ , n

∣∣∣∣%0

∣∣∣∣ α + ζα∗√
1− ζ ζ ∗ , n

〉
(6.10)

where|β, n〉 denotes the displaced Fock states. In particular, one obtains for the normalized
squeezed vacuum states|0; ζ 〉norm

Fζ,(0,0,r)(α, α
∗) = 2

(1+ r)π exp

{
− 2

1+ r
(α + ζα∗)(α∗ + ζ ∗α)

1− ζ ζ ∗
}
. (6.11)

We can now easily check that forr = 1, 0,−1 Fζ,(0,0,r)(α, α∗) equals the quasiprobabilities
given by equations (6.1)–(6.3), respectively.

7. Filtering with thermal states

Let us now consider that the quantum ruler is prepared in a thermal state described by the
density operator%f [15]

%f = 1

1+ N̄

(
N̄

1+ N̄

)N
= 1

1+ N̄
∞∑
n=0

(
N̄

1+ N̄

)n
|n〉〈n|

N̄ ≡ 〈%fN〉 = 1

exp(h̄ω/kT )− 1

N̄

1+ N̄ = exp

(
− h̄ω
kT

)
N ≡ a†a

(7.1)

where ω is the frequency of the harmonic oscillator mode,T is the temperature,k is
Boltzmann’s constant andN is the number operator. From equations (3.7) and (3.8) with
the help of the substitution|ψ〉〈ψ | → %f we find for the quasiprobabilityFf (α, α∗) the
expression

Ff (α, α
∗) ≡ 1

π
〈%D(α, α∗)%f (D(α, α∗))†〉

=
∞∑
n=0

〈n|%f |n〉Ln
(
− ∂2

∂α∂α∗

)
Q(α, α∗)

= 1

1+ N̄
∞∑
n=0

(
N̄

1+ N̄

)n
Ln

(
− ∂2

∂α∂α∗

)
Q(α, α∗). (7.2)
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Using the generating function of the Laguerre polynomialsLn(z) we can rewrite
equation (7.2) as

Ff (α, α
∗) = exp

(
N̄

∂2

∂α∂α∗

)
Q(α, α∗)

= 1

N̄π
exp

(
−αα

∗

N̄

)
∗Q(α, α∗). (7.3)

This means that the quasiprobabilityFf (α, α∗) associated with the thermal-state filtering
can be represented as a convolution of the coherent-state quasiprobabilityQ(α, α∗) with a
Gaussian function. The quasiprobabilityFf (α, α∗) can also be expressed via the Wigner
function of the measured state

Ff (α, α
∗) = exp

{(
N̄ + 1

2

) ∂2

∂α∂α∗

}
W(α, α∗)

= 1(
N̄ + 1

2

)
π

exp

(
− αα∗

N̄ + 1
2

)
∗W(α, α∗) (7.4)

and via the Glauber–Sudarshan quasiprobability of the measured state

Ff (α, α
∗) = exp

{
(N̄ + 1)

∂2

∂α∂α∗

}
P(α, α∗)

= 1

(N̄ + 1)π
exp

(
− αα∗

N̄ + 1

)
∗ P(α, α∗). (7.5)

It is obvious that at zero temperature (i.e. whenN̄ = 0) the quasiprobabilityFf (α, α∗)
equals the coherent-state quasiprobabilityQ(α, α∗).

We note that the quasiprobabilityFf (α, α∗) obtained as a result of filtering with a
thermal state can be expressed as a properly weighted sum of propensities associated with
filtering with Fock states|n〉, i.e.

Ff (α, α
∗) = 1

(1+ N̄)π
∞∑
n=0

(
N̄

1+ N̄

)n
〈α, n|%|α, n〉. (7.6)

When we compare the expression (7.6) forFf (α, α∗) with the class of s-ordered
quasiprobabilitiesF(0,0,r3)(α, α

∗) which possesses the diagonal representation (see [25, 27],
s = −r3)

F(0,0,r3)(α, α
∗) = 2

(1+ r3)π
∞∑
n=0

(
−1− r3

1+ r3

)n
〈α, n|%|α, n〉 (7.7)

we find thatFf (α, α∗) andF(0,0,r3)(α, α
∗) are equal when

r3 = 1+ 2N̄ > 1 (N̄ > 0). (7.8)

This means that one can obtain quasiprobabilitiesFf (α, α
∗) corresponding to the filtering

with thermal states as a formal extension of the class ofs-ordered quasiprobabilities to
valuesr3 > 1.

7.1. Reconstruction of density operators from ‘noisy’ propensities

It is not surprising that one can completely reconstruct the density operator of the measured
state out of the propensity obtained from filtering withpure-statefilters. Obviously, when
the filter is prepared in a highly nonclassical state, then the reconstruction procedure can
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be very difficult technically and rather inefficient practically. Nevertheless, in principle, it
is possible. On the other hand, when the quantum ruler is prepared in a statistical mixture,
then information contained in the measured propensity is also biased byclassical noise.
So the question is whether the inversion from the propensity to the density operator of the
measured state can be performeduniquely. In what follows we show that this is possible.
We will consider one particular example when the filter is in a thermal state.

The reconstruction of the density operator% from the quasiprobabilityFf (α, α∗) can be
made in two steps. Firstly, we eliminate the classical noise from the propensityFf (α, α

∗),
i.e. we perform a transformationFf (α, α∗) → Q(α, α∗). Once this is done, then using
results of previous sections (see equations (3.4) and (3.5)) we can obtain the density operator
of the measured system.

The first step of this procedure is based on the formal inversion of equation (7.3), i.e.

Q(α, α∗) = exp

(
−N̄ ∂2

∂α∂α∗

)
Ff (α, α

∗)

= 1√
N̄2π

exp

(
αα∗

N̄

)
∗ Ff (α, α∗). (7.9)

Unfortunately, this is a convolution ofFf (α, α∗) with a Gaussian function having a positive-
definite quadratic form in the exponent. This simply means that the integral (7.9) cannot be
performed in the sense of the usual integral representation of the convolution. To overcome
the problem we have to define this convolution according to the theory of generalized
functions [43, 45]. That is, we have to treat exp(αα∗/N̄) as a generalized function, i.e. a
linear analytic functional for which the real variables Re(α) and Im(α) can be separately
extended to complex variables. Simultaneously, we transform the two integrations over
the real axes into integrations over the imaginary axes of the new independent complex
variables (the sign of the square root in equation (7.9) depends on the chosen direction on
integration paths).

Alternatively, the convolution (7.9) can be performed with the help of Fourier transforms
of the right- and left-hand side of this equation. In this case we obtain in the right-hand
side of the new equation the product of the Fourier transform ofFf (α, α

∗) and the Fourier
transform of the Gaussian function with positive exponent (which has to be considered in a
sense of the Fourier transformations of generalized functions, which in this particular case
is equal to a Gaussian function with a positive-definite quadratic form in the exponent). The
inversion of the Fourier transform of the product of the Fourier transforms in the right-hand
side of equation (7.9) can be performed due to the rapid decrease of the Fourier transform
of Ff (α, α∗) at infinity. Finally, the convolution (7.9) can be evaluated with the help of the
Taylor series expansion of the integral operator exp(−N̄ ∂2/(∂α∂α∗)) which is the Fourier
transform of the Gaussian function in (7.9) with the variables substituted by corresponding
partial derivatives

Q(α, α∗) =
∞∑
n=0

(−N̄)n
n!

∂2n

∂αn∂α∗ n
Ff (α, α

∗). (7.10)

As an example let us consider that the measured system is prepared in a coherent state
|β〉. If the filter is in a thermal state, then the corresponding propensity reads

Ff (α, α
∗) = 1

(N̄ + 1)π
exp

{
− (α − β)(α

∗ − β∗)
N̄ + 1

}
. (7.11)
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To obtain theQ-function from this ‘noisy’ propensity we utilize equation (7.10) and we
find†

Q(α, α∗) =
∞∑
n=0

(−N̄)n
n!

∂2n

∂αn∂α∗ n
1

(N̄ + 1)π
exp

{
− (α − β)(α

∗ − β∗)
N̄ + 1

}
= 1

(N̄ + 1)π
exp

{
− (α − β)(α

∗ − β∗)
N̄ + 1

}
×
∞∑
n=0

(−N̄)n
n!

(
∂

∂α
− α

∗ − β∗
N̄ + 1

)n(
− α − β
N̄ + 1

)n
= 1

(N̄ + 1)π
exp

{
− (α − β)(α

∗ − β∗)
N̄ + 1

}
× (N̄ + 1) exp

{
− N̄(α − β)(α

∗ − β∗)
N̄ + 1

}
= 1

π
exp{−(α − β)(α∗ − β∗)}. (7.12)

Thus we show that theQ-function (as well as the corresponding density operator) of a
coherent state|β〉 can beuniquely reconstructed from propensities obtained from filtering
with the help of thermal filters.

To conclude this section we make two comments:
(i) The convolution in equation (7.3) is unique in the sense that there exists a one-to-

one mapping between quasiprobabilitiesQ(α, α∗) and propensitiesFf (α, α∗). This can be
understood as a consequence of the fact that the equation exp(N̄ ∂2/(∂α∂α∗))f (α, α∗) = 0
only has the trivial solutionf (α, α∗) = 0. Operationally, this allows us to create a
(complete) list of direct transformations from specific functionsQ(α, α∗) to their ‘noisy’
counterpartsFf (α, α∗) and vice versa.

(ii) Problems and difficulties in the evaluation of convolutions with Gaussian functions
having positive-definite quadratic forms in the exponent are present in every case when one
has to perform the transition from ones-ordered quasiprobability to another less smoothed
s-ordered quasiprobability (for example, fromQ(α, α∗) to W(α, α∗) or from W(α, α∗) to
P(α, α∗)). Convolutions with normalized Gaussian functions form Abelian Lie groups
which in the two-dimensional case lead to a three-parameter group of Gaussian functions
centred at the coordinate origin with the delta functionδ(α, α∗) as the unit element [27].
More generally, they form some algebra of convolutions [43].

8. Conclusions

In this paper we have focused our attention on the problem of reconstruction of density
operators from propensities obtained in eight-port homodyne detection with arbitrary
quantum rulers. We have also introduced the corresponding generalized Glauber–Sudarshan
quasiprobabilities associated with these propensities. We have shown that the transition from

† The sum overn in this equation is evaluated in the following way. First, the binomial formula is applied to the
differential operator and then the differentiations are accomplished. The double sum which arises is reordered. The
first summation leads to the sum of the Taylor series ofk!(1− z)−(k+1) with z = N̄/(N̄ + 1) which is convergent
for arbitrary|z| < 1 and therefore for arbitrarȳN . The remaining summation leads to the sum of the Taylor series
of the exponential function which is an entire function and therefore is uniformly convergent in arbitrary compact
regions of the real axis or complex plane.
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the usual coherent-state quasiprobability (i.e. theQ-function) to the generalized coherent-
state quasiprobability is associated with the problem of the inversion of certain differential
or integral operators. However, as we have shown, in general, it is difficult to perform this
inversion explicitly. For instance, we have not found a closed expression for the inverted
operators under consideration in the case when Fock states|n〉 (n > 2) are used as quantum
rulers. On the other hand, if quantum rulers belong to the class of Gaussian states (for
instance, squeezed vacuum states|0; ζ 〉norm and their displacements) it is possible to give
all necessary formulae in a closed explicit form. Finally, we have shown that propensities
based on filtering with quantum rulers prepared in statistical-mixture states can be inverted
and the noise induced by filtering can be separated from measured data, so the density
operator of the measured state can be reconstructed uniquely.
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Appendix A. Reconstruction of density operators from normally ordered moments

In equation (3.5) we defined the set of operatorsak,l (k, l = 0, . . . ,∞) as

ak,l ≡ 1

k!l!

{
∂k+l

∂α∗ k∂αl
|α〉〈α|

}
(α=α∗=0)

. (A.1)

In this appendix we derive the Fock-state representation of these operatorsak,l . Rewriting
equation (A.1) in the Fock basis we find

ak,l = 1

k!l!

∞∑
m=0

∞∑
n=0

|n〉〈m|√
m!n!

{
∂k+l

∂α∗ k∂αl
exp(−αα∗)α∗mαn

}
(α=α∗=0)

= 1

k!l!

∞∑
m=0

∞∑
n=0

|n〉〈m|√
m!n!

{
exp(−αα∗)

(
∂

∂α∗
− α

)k(
∂

∂α
− α∗

)l
α∗mαn

}
(α=α∗=0)

=
{k,l}∑
j=0

(−1)j |l − j〉〈k − j |
j !
√
(k − j)!(l − j)! (A.2)

where {k, l} denotes the smaller of the two integersk and l. In a normally ordered
representation one obtains from equation (A.2) the expression

ak,l = (−1)k+l

k!l!

∞∑
s=[k,l]

(−1)ss!

(s − k)!(s − l)! a
† s−kas−l (A.3)

where [k, l] denotes the larger of the two integersk and l. We find that the operatorsak,l
are orthogonal to the operatorsa† kal according to

〈a† kalam,n〉 = δk,mδl,n. (A.4)

So we can write the normally ordered expansion of the density operator in equation (3.5)
as

% =
∞∑
k=0

∞∑
l=0

〈%ak,l〉a† kal. (A.5)
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With the help of the orthogonality relation (A.4) we also obtain the dual relation

% =
∞∑
k=0

∞∑
l=0

ak,l〈a† kal%〉. (A.6)

This equation can be interpreted as a reconstruction formula for the density operator% from
its normally ordered moments〈a† kal%〉 [47].

Appendix B. Proof of a summation identity

We prove the identity in equation (5.11) by using the Mehler formula [44]

∞∑
k=0

zk

2kk!
Hk(x)Hk(y) = 1√

1− z2
exp

{
2xyz− (x2+ y2)z2

1− z2

}
. (B.1)

First, we perform the following chain of transformations:

1√
1− z2

exp

{
z2

1− z2

(
2xyz− (x2+ y2)

)}
= 1√

1− z2
exp

{
2xyz− (x2+ y2)z2

1− z2

}
exp(−2xyz)

=
∞∑
k=0

zk

2kk!
Hk(x)Hk(y)

∞∑
l=0

(−1)l

l!
(2xyz)l

=
∞∑
m=0

∞∑
n=0

(−1)m+n

22(m+n)m!n!

×
{2m,2n}∑
k=0

∞∑
l=0

(−1)l k!

l!(k − 2n)!(k − 2m)!
xk+l−2nyk+l−2m(2z)k+l

=
∞∑
m=0

∞∑
n=0

(−1)m+n

22(m+n)m!n!

{2m,2n}∑
j=0

x2m−j y2n−j (2z)2(m+n)−j

×
{2m−j,2n−j}∑

l=0

(−1)l
(
2(m+ n)− j − l)!

l!(2m− j − l)!(2n− j − l)!

=
∞∑
m=0

∞∑
n=0

(−1)m+nzm+n

2m+nm!n!

×
{2m,2n}∑
j=0

(2m)!(2n)!

j !(2m− j)!(2n− j)!
(√

2zx
)2m−j (√

2zy
)2n−j

(B.2)

where after a change of the order of the summations in the fourth step we performed the
index substitutionj + k + l = 2(m+ n) and then used the summation formula

{r−j,s−j}∑
l=0

(−1)l(r + s − j − l)!
l!(r − j − l)!(s − j − l)! =

r!s!

j !(r − j)!(s − j)! (B.3)

in the special case whenr = 2m ands = 2n. This summation formula is true forr = s = 0
with arbitraryj and can be easily proved then for arbitrary(r, s) andj by complete induction
r → r+1 ands → s+1. The polynomial written by the summation overj in equation (B.2)
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can also be expressed by a Laguerre polynomial and we obtain a new identity for Laguerre
polynomials. With the substitutions

x ≡ 1√
2ζ ∗

∂

∂α
y ≡ 1√

2ζ

∂

∂α∗
z ≡

√
ζ ζ ∗ (B.4)

we transform this identity into equation (5.10).

Appendix C. Connections between squeezed-state propensities

We give here a complete list of the connections of the squeezed-state propensities to the
usual quasiprobabilitiesP(α, α∗),W(α, α∗) andQ(α, α∗). This can be obtained by using
the convolutions of normalized Gaussian functions with the additive complex parameters
(r1, r2, r3) introduced in [27].

(i) Connection ofQζ(α, α
∗) to usual quasiprobabilities:

(a) Connection toQ(α, α∗)

Qζ (α, α
∗) = 1

π

√
−1− ζ ζ ∗

ζ ζ ∗
exp

{
αα∗ + α

2

2ζ
+ α

∗ 2

2ζ ∗

}
∗Q(α, α∗)

= exp

{
1

1− ζ ζ ∗
(
ζ ζ ∗

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
Q(α, α∗). (C.1)

(b) Connection toW(α, α∗)

Qζ (α, α
∗) = 2

π
exp

{
−2(α + ζα∗)(α∗ + ζ ∗α)

1− ζ ζ ∗
}
∗W(α, α∗)

= exp

{
1

2(1− ζ ζ ∗)
(
∂

∂α
− ζ ∗ ∂

∂α∗

)(
∂

∂α∗
− ζ ∂

∂α

)}
W(α, α∗). (C.2)

(c) Connection toP(α, α∗)

Qζ (α, α
∗) =

√
1− ζ ζ ∗
π

exp
{−(αα∗ + 1

2ζ
∗α2+ 1

2ζα
∗ 2
)} ∗ P(α, α∗)

= exp

{
1

1− ζ ζ ∗
(

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
P(α, α∗). (C.3)

(ii) Connection ofPζ (α, α∗) to usual quasiprobabilities:
(a) Connection toQ(α, α∗)

Pζ (α, α
∗) =

√
1− ζ ζ ∗
π

exp
{
αα∗ + 1

2ζ
∗α2+ 1

2ζα
∗ 2
} ∗Q(α, α∗)

= exp

{
− 1

1− ζ ζ ∗
(

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
Q(α, α∗). (C.4)

(b) Connection toW(α, α∗)

Pζ (α, α
∗) = 2

π
exp

{
2(α + ζα∗)(α∗ + ζ ∗α)

1− ζ ζ ∗
}
∗W(α, α∗)

= exp

{
− 1

2(1− ζ ζ ∗)
(
∂

∂α
− ζ ∗ ∂

∂α∗

)(
∂

∂α∗
− ζ ∂

∂α

)}
W(α, α∗). (C.5)
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(c) Connection toP(α, α∗)

Pζ (α, α
∗) = 1

π

√
−1− ζ ζ ∗

ζ ζ ∗
exp

{
−
(
αα∗ + α

2

2ζ
+ α

∗ 2

2ζ ∗

)}
∗ P(α, α∗)

= exp

{
− 1

1− ζ ζ ∗
(
ζ ζ ∗

∂2

∂α∂α∗
− ζ

2

∂2

∂α2
− ζ

∗

2

∂2

∂α∗ 2

)}
P(α, α∗). (C.6)

(iii) Direct connection betweenPζ (α, α∗) andQζ(α, α
∗)

Qζ (α, α
∗) = 1

π
exp

{
− (α + ζα

∗)(α∗ + ζ ∗α)
1− ζ ζ ∗

}
∗ Pζ (α, α∗)

= exp

{
1

1− ζ ζ ∗
(
∂

∂α
− ζ ∗ ∂

∂α∗

)(
∂

∂α∗
− ζ ∂

∂α

)}
Pζ (α, α

∗). (C.7)

The inversion of all these convolutions can be obtained by changing the sign in the
exponents of the Gaussian functions in these convolutions. By settingζ = 0 one can take
from (C.1)–(C.7) the connections between the usual quasiprobabilitiesQ(α, α∗),W(α, α∗)
andP(α, α∗).
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[30] Perelomov A M 1972 Commun. Math. Phys.26 222
[31] Rasetti M 1975Int. J. Theor. Phys.14 1
[32] Gilmore R 1985Coherent States, Applications in Physics and Mathematical Physicsed J R Klauder and

B-St Skagerstam (Singapore: World Scientific)
[33] Olver P J 1986Applications of Lie groups to Differential Equations(Berlin: Springer)
[34] Klauder J R 1960Ann. Phys., NY11 123
[35] Sudarshan E C G1963Phys. Rev. Lett.10 277
[36] Cahill K E and Glauber R J 1969Phys. Rev.177 1857

Cahill K E and Glauber R J 1969Phys. Rev.177 1882
[37] Agarwal G S and Wolf E 1970Phys. Rev.D 2 2161
[38] Wünsche A 1991Quantum Opt.3 359
[39] Bishop R F and Vourdas A 1994Phys. Rev.A 50 4488
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