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Multiple observations of quantum clocks
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How much information about the original state preparation can be extracted from a quantum system which
has already been measured? That is, how many independent~noncommunicating! observers can measure the
quantum system sequentially and give a nontrivial estimation of the original unknown state? We investigate
these questions, and show from a simple example that information about the original preparation is not entirely
lost as a result of the measurement-induced collapse of the quantum state, and that an infinite number of
independent observers who have noprior knowledge about the initial state can gain partial information about
the original preparation of the quantum system.

PACS number~s!: 03.65.Bz, 42.50.Ar, 89.70.1c
in
ca
tio
r
,
e

e-
ty

f
o

m

,

n
ti
u

um

e

that

at
Oth-
ured
for-

ent
ter-
ore,
of
ell-

uch

for-
sys-
with
r-

can
in
tain

ol-
se

ent
uan-
an
on-
the
In
u-
e

er a
us
rs
a-
ant

Sc
of
From thedeterministicmeasurement model employed
classical physics, it follows that the state of the physi
system is not affected by measurement. That is, informa
about states of the system can be determined with an a
trary precision. Formally, from a kinematical point of view
this can be expressed as follows: in classical physics th
are measurements~m! for which the statistics of the measur
ment results~r! characterized by the conditional probabili
distribution pm(r us) can be, forall possible statess of the
given classical system, of the form

pm~r us!5d~sr2s!. ~1!

Moreover, these measurements do not change the state o
classical system, so an arbitrary number of independent
servers~i.e., observers who do not communicate! can deter-
mine the state.

The standard Copenhagen interpretation of quantum
chanics is deeply rooted in a model ofnondeterministicsta-
tistical measurement@1#. From the kinematical point of view
the quantum theory models~predicts! the statistics of results
registered by a measuring device when the measureme
performed on a quantum object. Within this nondeterminis
model of measurement, the conditional probability distrib
tion pm(r us) can never be of the form of Eq.~1! for arbitrary,
initially unknown, states of a quantum system. In quant
mechanics the conditional probability distributionpm(r us) is
given by the expression

pm~r us!5Tr@Ôr r̂s#, ~2!

where the set of positive operatorsÔr which sum up to the
identity operator models the measuring device, and the d
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sity matrix characterizes the state of the quantum object
is the subject of the measurement.

The axiomatics of quantum theory implicitly require th
the state of the system is changed during measurement.
erwise, repeated measurements of the previously meas
but unchanged quantum state could reveal still more in
mation about the state. Consequently, the measurem
model would eventually be equivalent to the standard de
ministic measurement model of classical physics. Theref
there is an additional rule which excludes the possibility
repeated measurements. This additional principle is the w
known von Neumannprojectionpostulate.

Nevertheless it is an interesting question to ask how m
information about the original state is ‘‘left’’ in a system
which has already been measured. That is, how much in
mation about the preparation can be extracted from the
tem by a second observer who does not communicate
the first observer. A further question we would like to unde
stand is whether, from the axioms of quantum theory, we
obtain a ‘‘classical-like’’ picture when a physical system
an unknown state can be repeatedly measured, yet still re
information about the original state preparation. In what f
lows we analyze a simple example which illuminates the
two questions.

First we specify the task of measurement. In measurem
we wish to determine some parameters of the state of a q
tum system which correspond to a symmetry group. As
example, consider a position measurement which is c
nected with a group of translations, or a measurement of
angle of orientation connected with a group of rotations.
what follows we analyze the simplest example of a contin
ous parameterwP^0,2p&, the phase which parametrizes th
group of rotations in the two-dimensional space of theU(1)
group. To make our discussion more physical we consid
model of optimal quantum clocks discussed in our previo
work @2#. We will analyze the situation when the observe
have noa priori knowledge about the original state prepar
tion. This means that the prior phase distribution is const
and equal to 1/2p.
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In our previous paper we studied the problem of buildi
an optimal quantum clock from an ensemble ofN ions@3#. In
particular we assumed an ion trap withN two-level ions, all
in the ground stateuC&5u0& ^ •••^ u0&. This state is an ei-
genstate of the free Hamiltonian, and thus cannot record t
~phase!. Therefore, the first step in building a clock was

bring the system to an appropriate initial~reference! stateV̂
which is not an energy eigenstate. For instance, one can
ply a Ramsey pulse whose shape and duration is chosen
that it puts all the ions into the product state

V̂5 r̂ ^ N, ~3!

with r̂5uc&^cu anduc&5(u0&1u1&)/A2. After this prepara-
tion stage, the ions evolve in time according to the Ham

tonian evolution V̂(t)5Û(t)V̂Û†(t), where Û(t)
5exp$2itĤ% ~we use units such that\51). Therefore, these
ions can be viewed as a time-recording device. The task
determine this timet ~or equivalently the correspondin
phase! by carrying out a measurement on the ions. Note t
because of the indeterminism of quantum mechanics i
impossible, given asingleset ofN two-level ions, to deter-
mine the elapsed time with certainty. As we showed ear
@4#, one can find an optimal measurement~see below!, with
the help of which information about the phase can be m
optimally ‘‘extracted’’ from a system ofN identically pre-
pared spin-1/2 particles. The ability of the system to ret
information about the phase~time! depends very much on

the choice of the initial reference stateV̂. For instance, if
this state is an eigenstate of the total Hamiltonian, the sys
is not able to record~keep! time information. In Ref.@2# we
addressed the question of which is the most appropriate

tial stateV̂ of the N spin-1/2 particle which ‘‘keeps’’ the
record of the phase in the most reliable way. In other wor
what are the optimal quantum clocks, and what is the per
mance of such quantum clocks when compared with cla
cal clocks.

In the present paper we investigate another aspect of
comparison. That is, we discuss the ‘‘robustness’’ of qu
tum clocks with respect to repeated measurements perfor
on them. Classical clocks, as all classical objects, do
change their state or behavior when they are observed. A
stated above, this is no longer true for quantum objects. T
has consequences for the functioning of our proposed q
tum clocks. In particular, one can ask whether quant
clocks may be robust enough in the sense that repeated
out of the time, let us say by many independent and nonc
municating observers, can provide reliable information~if
any! about the time to all of them. In order to find quantit
tive answers to our questions, let us recall briefly the det
of how time is read out from our quantum clocks.

In general, a quantum-mechanical measurement is
scribed by a positive operator value measure~POVM! @1,5,6#
which is a set$Ôr% r 51

R of positive Hermitian operators, suc

that ( r Ôr5 1̂. Because such a measurement is in gen
nondeterministic, with each outcomer of the measuremen
we associate an estimatet r of the time elapsed. The differ
06230
e

p-
ch

-

to

t
is

r

st

n

m

i-

s,
r-
i-

is
-
ed
ot
we
is
n-

ad-
-

ls

e-

al

ence between the estimated timet r and the true timet is
quantified by a cost functionf (t r2t) @6#. Here we note that
because of the periodicity of the clock,f has to be periodic.
We also takef (t) to be an even function to ensure a nonze
average. Our task is to minimize the mean value of the c
function

f̄ 5(
r
E

0

2p

p1~r ut ! f ~ t r2t !
dt

2p
, ~4!

where

p1~r ut !5Tr@ÔrV̂~ t !#. ~5!

Following the discussion in Ref.@2#, we chose the cost func
tion to be 4 sin2 t/2, which for small values of the mean co
can be approximated asf̄ .Dt2.

Holevo @6# originally considered covariant measuremen
in which timest r take a continuum of values between 0 a
2p. But, as shown in Ref.@4#, the completeness relation ca
also be satisfied by taking a discrete set of timest r
52pr /(N11), r 50, . . . ,N. In this case the Hermitian op
eratorsÔr can be taken in the form

Ôr5uC r&^C r u, ~6!

such that( r Ôr5 1̂, where

uC r&5eit r ĤuC0&, uC0&5
1

AN11
(

m50

N

um&, ~7!

which can be rewritten as

uC r&5
1

AN11
(

m50

N

ei @2p/(N11)#rmum&. ~8!

The phase statesuC r& @7# form an orthonormal basis o
the Hilbert space, and the corresponding measuremen
therefore a von Neumann measurement. This is importan
applications, because it means that it is not necessary to
an ancilla to make the optimal measurement. Moreover
follows from the von Neumann projection postulate, the st
immediately after the measurement is uniquely determin

Once we have specified the optimal measurement we h

to specify the initial~reference! stateV̂ of our system. As
discussed in Ref.@2#, by an appropriate choice of this sta
one can substantially improve the performance of quan
clocks. However, this concerns the estimation performed
the first observer~see below!. The subsequent observers w
actually always observe only rotated phase states. These
generated in the von Neumann measurement performe
the previous observer and subsequent time evolution. Th
fore, in order to simplify our calculations we will assum

that the initial ~reference! state V̂ is the phase stateV̂
5uC0&^C0u given by Eq.~7!. This initial state will evolve in

time asV̂(t)5uC0(t)&^C0(t)u, where
9-2
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MULTIPLE OBSERVATIONS OF QUANTUM CLOCKS PHYSICAL REVIEW A62 062309
uC0~ t !&5
1

AN11
(

m50

N

e2 i tmum&. ~9!

Let us study now how independent observers measur
system ofN spin-1/2 particles initially prepared in an un
known state obtained by the rotation of the reference s
@Eq. ~7!#. As far as the first observer was concerned,
problem was already solved~see Ref.@4#! and the mean cos
@Eq. ~4!# could be calculated. Taking into account that t
optimal phase~time! measurement is realized via the proje
tors Ôr5uC r&^C r u with the phase statesuC r& given by Eq.
~8!, we can express the mean costf̄ 1 after the first measure
ment ~therefore we use the subscript 1) as

f̄ 154(
r 50

N E
0

2p d t

2p U (
m50

N

ei (tr2t)mU2

sin2
~ t r2t !

2
. ~10!

After the integration is performed, we find that the mean c
as a function of numberN of spin-1/2 particles is given by
the expression

Dt2. f̄ 1~N!52F12
N

N11G5
2

N11
. ~11!

We see that the mean cost when a single measureme
performed (N51) takes the valuef̄ 1(N51)51. Con-
versely, forN→` the mean cost is equal to zero. Spec
cally, for largeN the varianceDt goes to zero as 1/AN. This
is far from being optimal. As shown in Ref.@2#, in order to
make this variance minimal we should take the refere
state to be

uCopt&.
A2

AN11
(

m50

N

sin
p~m11/2!

N11
um&. ~12!

In this case the cost decreases for largeN as f̄ opt.p2/(N
11)2 corresponding toDtopt.p/(N11). Nevertheless, a
our task is to study how much information subsequent
servers can gain we are not over-worried about the optim
ity of the preparation of the reference state. Our further re
can be understood as a lower bound, and the optimiza
can be performed rather straightforwardly in any case.

Now we turn our attention to subsequent observers.
have assumed that our observers do not communicate. If
do then the first observer can broadcast the result of his m
surement~or, what is equivalent, he can broadcast the ori
tation of his apparatus! and there is no need for subseque
observers to perform any measurement, because they k
that they cannot perform better than this first observer.
describe the mean cost of the estimation of subsequent
servers, in Eq.~4! we have to modify the conditional prob

ability distribution p1(r ut)5Tr@ÔrV̂(t)# characterizing the
measurement statistics of the observer. This is because

(k11)st observer does not observe the original stateV̂(t).
He can only measure the state generated via the mea
ment performed by the previouskth observer. Taking into
account the projective character of the measurement,
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state is one of the statesuC r&. In addition, the following
random factors enter the game: First, the (k11)st observer
does not have complete information about the choice of
measuring apparatus of thekth observer. Although all ob-
servers possess an optimal measuring apparatus of the
construction~corresponding to the optimal von Neuman
measurement! there is one parameter they can choose at r
dom. That is, if we take the POVM characterized by the
of projectorsÔr5uC r&^C r u, r 50, . . . ,N, and rotate them
all by the same transformationÛ(a)5exp$2iaĤ%, we ob-
tain a new POVM,Ôr

a5Û(a)ÔrÛ
†(a), which also corre-

sponds to the optimal measuring apparatus. It is this in
mation about the anglea8P^0,2p& characterizing the
‘‘actual orientation’’ of thekth measuring apparatus which
not available to the (k11)st observer. The second piece
information which is not available to the (k11)st observer is
the knowledge of which of the possible outcomesr 8 of the
measurement was detected by thekth observer. Finally, the
actual timet8 when this measurement was performed is a
unknown~however, as we will soon see, this is not importa
for our consideration!. Taking these random factors into a
count, the required conditional probability distributio
pk11(r ut,a) ~we have included the parametera in the con-
ditional probability distribution! reads

pk11~r ut,a!5 (
r 850

N E
0

2p

pk~r 8ut8,a8!
da8

2p

3Tr@Ôr
aÛ~ t2t8!Ôr 8

a8Û†~ t2t8!#. ~13!

It is easily seen that this can be simplified as

pk11~r ut,a!5Tr@V̂k11~ t !Ôr
a#, ~14!

where

V̂k11~ t !5 (
r 850

N E
0

2p

pk~r 8ut,a8!Ôr 8
a8 da8

2p
. ~15!

The last transformation is possible becausepk(r 8ut8,a8)
5pk(r 8ut,a81t2t8) and the integration with respect toa8
ensures that the shift (t2t8) is irrelevant.

Now we define the mean cost of the (k11)st measure-
ment as

f̄ k11~N!5(
r
E

0

2p

pk11~r ut,a! f ~ t r2t !
d t

2p
. ~16!

Obviously the choice ofa ~the orientation of the apparatus!
does not affect the mean cost of the measurement u
given circumstances. On the other hand, it definitely affe
the state into which system collapses after the projec
measurementÔr

a .
Before we present a general solution for the mean c

@Eq. ~16!#, we analyze a simple example: Let us assume
a single qubit, i.e.,N51. This qubit is first prepared in the
state u0&, and then after the application of the Hadama
9-3
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V. BUŽEK, P. L. KNIGHT, AND N. IMOTO PHYSICAL REVIEW A 62 062309
transform it is ‘‘rotated’’ into a superposition stateuc&
5(u0&1u1&)/A2, which evolves according to the fre
Hamiltonian as

uc~ t !&5~ u0&1e2 i t u1&)/A2, ~17!

i.e., V̂1(t)5uc(t)&^c(t)u. The two projectors which de
scribe the measurement apparatus used by the first obs
are defined above, i.e.,Ôr5uC r&^C r u, where in the case of a
single qubit

uC0&5
1

A2
~ u0&1u1&), uC1&5

1

A2
~ u0&2u1&). ~18!

In this case, obviously,t050 andt15p. The probability that
the systemuc(t)& is measured in the stateuC r& is

p1~r ut !5u^C r uc~ t !&u25
1

2
~16cost !, r 50,1. ~19!

Thus the mean cost of the first measurement is

f̄ 152E
0

2pF ~11cost !sin2
t

2
1~12cost !cos2

t

2G d t

2p

52S 12
1

2D , ~20!

which is equal to 1, and is in accordance with the gene
result given by Eq.~11!. The system after the measureme
is either in the stateuC0& or in the stateuC1&.

Now assume that the second observer is going to perf
a measurement under the conditions described above. S
he does not know the result of the previous measurem
and does not know the orientation of the first apparatus
has to assume that the state he is going to measure ha
form given by Eq.~15!, i.e.,

V̂2~ t !5 (
r 850

1 E
0

2p

p1~r 8ut,a8!Ôr 8
a8 da8

2p
. ~21!

This means he has to average over all possible or
tations of the first apparatus as well as over all poss
outcomes of the first measurement. We first specify

projectors Ôr 8
a85uC r 8(a8)&^C r 8(a8)u, where uC r 8(a8)&

5exp(2ia8Ĥ)uCr8&. These states in the case of a singe qu
read

uC0&5
1

A2
~ u0&1e2 ia8u1&),

uC1&5
1

A2
~ u0&2e2 ia8u1&). ~22!

The corresponding probabilitiesp1(r 8ut,a8) then read
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p1~r 8ut,a8!5 z^C r uc~ t !& z25
1

2
@16cos~ t2a8!#, ~23!

where1 (2) stands forr 850(1). Consequently, using Eq
~15!, we find

V̂2~ t !5
1

4
1̂1

1

2
V̂1~ t !. ~24!

When we insert this expression into Eq.~14! we find the
probabilitiesp2(r ut,a) ~for definiteness, in what follows we
chosea50):

p2~r ut,a!5
1

2 S 16
1

2
cost D , r 50,1. ~25!

Once this is done we utilize Eq.~16!, and for the mean cos
of the second measurement we find the expression

f̄ 25(
r 50

1 E
0

2p

p2~r ut,a! f ~ t r2t !
d t

2p

52E
0

2pF S 11
cost

2 D sin2
t

2
1S 12

cost

2 D cos2
t

2G d t

2p

52F12S 1

2D 2G5
3

2
. ~26!

As expected, the mean cost of the second observatio
larger than for the first one, but is still smaller than the c
associated with a random guess (f̄ 52). This means that the
second observer can gain nontrivial information about
original preparation of the qubit.

Using the iterative definition given by Eqs.~14! and~15!,
together with the definition for the mean cost@Eq. ~4!#, we
calculate the precision of the measurement of time perform
with the quantum clocks as a function of the number
qubitsN and the number of subsequent observersk:

f̄ k~N!52F12S N

N11D kG . ~27!

This is the main result of our paper. We stress that the ab
result holds for the reference state corresponding to the p
state@Eq. ~7!#, and the case in which observers have noa
priori knowledge about the initial-state preparation. This c
be generalized to the case when the initial reference sta
taken to be the optimal state@Eq. ~12!#—unfortunately, in
this case we are not able to find a solution in an eleg
closed analytical form.

Let us summarize our results. We have shown that
performing a measurement on quantum clocks which w
already measured independently, observers can still ob
nontrivial information about the original preparation of th
quantum system. The larger the ensemble (N), the more ro-
bust the quantum system with respect to subsequent m
surements. Obviously, as follows from Eq.~27! for the (k
11)st observer, the mean cost of the estimation will
9-4
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larger than for thekth observer. From the point of view o
information stored in the system, in the large-N limit the
quantum system behaves very classically, i.e., an infi
number of independent observers who have no prior kno
edge about the state preparation can precisely measur
state of the system.
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