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1.1 Introduction

Any quantum dynamics 1, 2, i.e., the process that is described by a completely pos-
itive (CP) map of a quantum-mechanical system, can be probed in two different
ways: Either we use a single entangled state of a bi-partite system 3, or we use a
collection of linearly independent single-particle test states 4, 5 (forming a basis of
the vector space of all Hermitian operators). Given the fragility of entangled states
in this Chapter we will focus our attention on the process reconstruction using only
single-particle states.

The task of a process reconstruction is to determine an unknown quantum chan-
nel (a “black box”) using correlations between known input states and results of
measurements performed on states that have been transformed by the channel (see
Fig. 1.1). The linearity of quantum dynamics implies that the channel E is ex-
haustively described by its action %j → %′j = E [%j ] on a set of basis states, i.e., a
collection of linearly independent states %j , that play a role of test states. There-
fore, to perform a reconstruction of the channel E we have to perform a complete
state tomography 1, 6, 7 of %′j . The number of test states equals d2, where d = dimH
is the dimension of the Hilbert space H associated with the system. Consequently,
in order to reconstruct a channel we have to determine d2(d2 − 1) real parameters,
i.e., 12 numbers in the case of qubit (d = 2).

In what follows we will assume that test states can be prepared on demand
perfectly. Nevertheless, the reconstruction of the channel E can be affected by the
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Figure 1.1 A schematic representation of a reconstruction of a single-qubit channel. Input
(test) states %k of the single-qubit channels are represented by the Bloch sphere (the state
space of a single qubit). At the output of the single-qubit channel (modelled as a trans-
formation of the Bloch sphere into an ellipsoid, i.e., the Bloch sphere is “deformed” by the
action of the channel) a complete measurement of test states is performed. The complete
measurement is performed via the projective measurement of σ operators. Based on corre-
lations between input and output states of the test qubits the action of the quantum channel
(a CP map) is determined (reconstructed).

lack of required information, as each test state is represented by a finite ensemble
of identically prepared test particles (e.g., qubits). Correspondingly, measurements
performed at the output can result in an approximate estimation of transformed test
states. This situation is typical for experiments - one cannot prepare an infinite en-
semble of identically prepared particles, so frequencies of the measured outcomes
are only approximations of probability distributions. Consequently, a straightfor-
ward reconstruction of output states %

(out)
j might lead to non-physical conclusions

about the action of the quantum channel. As a result we can find a negative operator
%
(out)
j , or a channel E , which is not completely positive (CP) 1, 2.

We will recall the method of maximum likelihood (MML) to perform an estima-
tion of an unknown channel 8. We will use this method to perform a reconstruction
based on numerical simulation of the anti-unitary Universal-NOT gate (the spin-flip
operation) 9–14. This is a linear, but not a CP map and we will show how our esti-
mation will result in the optimal physical approximations of the U-NOT operation.
In order to demonstrate the power of this approach we will also apply it to obtain an
approximation of non-linear quantum-mechanical maps: the so called non-linear
polarization rotation (NPR) 15 and a highly non-linear transformation % −→ %2.

Having the result of the MML method, one may always analyze the question
how reliable this result is. As any numerical method, MML may fail by falling to
(or rather climbing up to) a non-local maxima. On the other hand, data provided
by experiment may lead to non-physical results. In this case one shall not wonder
that any physical approximation based on inconsistent data will result in an incon-
sistent map, e.g. a map that does not reproduce the experimental data perfectly. To
deal with such cases, we will examine the resulting value of the MML functional.
We will show that in certain cases it may be used as an indicator of whether the



Optimal approximation of non-physical maps

whole reconstruction scheme is consistent (e.g., whether we have a proper a priori
knowledge about input test states, etc.).

This Chapter is organized as follows: In Sec. 2 we present some basic facts
about quantum states and quantum channels. This should help a reader who is not
familiar with the problem of quantum state and process estimation (reconstruction)
to understand some technical details that are presented later in the Chapter. Then,
in Sec. 3 we describe properties of single-qubit channels. In Sec. 4 we briefly
introduce the method of maximum likelihood. In Sec. 5 we apply the MML for an
estimation of the Universal-NOT gate, while in Sec. 6 we will present two physical
approximations of non-linear maps, namely, the non-linear polarization rotation
and the map % −→ %2. In Sec. 7 we will examine how to use the value of the MML
functional to verify consistency of the reconstruction scheme - namely, whether the
prior knowledge about the input states is correct. In Sec. 8 we will summarize our
results.

1.2 Quantum states and quantum channels

1.2.1 States of quantum systems and density operators

In quantum theory a state of a physical system is described by a state vector or
a density operator % that acts on a Hilbert space H (of a specific dimension d)
associated with the system. Density operators are mathematical objects that allow
us to describe states of physical systems that have not been prepared in a unique
way. Specifically, a state of a quantum system that has been prepared in a unique
way is described by a state vector |Ψ〉. One can associate with the state vector |Ψ〉 a
density operator (projector) % = |Ψ〉〈Ψ|. In many situations though the preparation
is not under full control and the system is prepared in one state from a specific set
of states {|Ψj〉〈Ψj |} with corresponding probabilities pj (pj ≥ 0 and

∑
j pj = 1).

Such a “mixed” states of a quantum system is described by a density operator

% =
∑

j

pj |Ψj〉〈Ψj |. (1.1)

The density operator has to have non-negative eigenvalues and its trace has to be
equal to unity, i.e., Tr% = 1. The purity of the density operator can be quantified in
terms of a von Neumann entropy

S = −Tr (% ln %) . (1.2)

If we assume that the state vectors |Ψj〉 are mutually orthogonal (|Ψj〉 are basis
vectors of the Hilbert space H such that 〈Ψk|Ψj〉 = δj,k), then the eigenvalues
of the density operator (1.1) are equal to probabilities pj and the von Neumann
entropy (1.2) reads

S = −
d∑

j=0

pj ln pj . (1.3)
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It is clear now that if the system has been prepared in a unique (pure) state |Ψk〉,
i.e., pk = δj,k, then the entropy S is equal to zero. On the other hand, if the system
is prepared in a mixture of mutually orthogonal states |Ψj〉 (basis vectors of d-
dimensional Hilbert space H) with the equal probability, i.e., pj = 1/d, then the
von Neumann entropy of the corresponding (total) mixture achieves its maximum
value S = ln d.

Alternatively a concept of a mixed state can appear when our quantum system is
considered to be quantum-mechanically correlated with another quantum system.
To be more specific, let us consider two quantum systems A and B with Hilbert
spacesHA (dimHA = dA) andHB (dimHB = dB), respectively. The two Hilbert
spaces are spanned by basis vectors |Ψ(A)

k 〉 and |Ψ(B)
k 〉, respectively. For simplicity,

let us assume that dA = dB . Now we consider a pure bi-partite state |Φ〉AB (SAB =
0). If this pure state can be expressed in a factorized form, i.e., as a product of two
state vectors

|Φ〉AB = |φ(A)〉A ⊗ |φ(B)〉B, (1.4)

then the two systems under consideration are each in a pure state. The two sys-
tems are not correlated, which can be seen by performing a partial trace over one of
the sub-system (let say, B) and from the state vector |Φ〉AB we obtain a pure state
|φ(A)〉A (SA = 0). On the other hand, if the bi-partite state |Φ〉AB cannot be ex-
pressed in a factorized form (1.4) then we say, the the two sub-systems are mutually
entangled (quantum-mechanically correlated). Any such state can be expressed in
a form of the so-call Schmidt decomposition

|Φ〉AB =
∑

j

λj |ξ(A)
j 〉A|ξ(B)

j 〉B, (1.5)

where λj are non-negative real numbers satisfying the normalization condition∑
j λ2

j = 1 and |ξ(A)
j 〉A and |ξ(B)

j 〉B are orthonormal states from HA and HB ,
respectively. From the Schmidt decomposition it follows that states of the two sub-
systems are described the density operators

%(A) =
∑

j

λ2
j |ξ(A)

j 〉〈ξ(A)
j | ; %(B) =

∑

j

λ2
j |ξ(B)

j 〉〈ξ(B)
j | , (1.6)

from where we see that eigenvalues of the density operators %(A) and %(B) are equal
to λ2

j . Consequently, von Neumann entropies of both sub-systems are identical and
equal to SA = SB = −∑

j λ2
j lnλ2

j .

1.2.2 State tomography

A state of a quantum system can be completely reconstructed when meanvalues of
all system observables (the so-called “quorum”) are known from a measurement.
A typical example would be a state of a qubit - a spin-1/2 particle. This systems has
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a 2-dimensional Hilbert space and in general its state can be described by a density
operator

% =
1
2

(I + ~n · ~σ) , (1.7)

where ~σ = {σx, σy, σz}with σx,y,z being Pauli matrices. Components of the vector
~n = {nx, ny, nz} are the meanvalues of the Pauli operators in the state %, e.g.,
nx = Tr(%σx). These meanvalues can be determined when probabilities p± on
the eigenvectors | ± x〉 of the operator σx (we have σx| ± x〉 = ±| ± x〉) are
obtained from a measurement. In order to obtain a probability distributions p± =
〈±x|%|±x〉 a measurement on a sufficiently large (infinite) ensemble of identically
prepared qubits has to be performed. Once the measurement of all observables
belonging to the quorum is done the complete tomography (reconstruction) of the
state of a qubit can be performed.

It may happen that for one or other reason meanvalues of just a subset of ob-
servables from the quorum are known from the measurement. In this case a com-
plete tomography of the state cannot be performed because of missing information.
Nevertheless, a partial reconstruction (an estimation) of the measured state can be
performed. One of possible approaches in this case is the state-reconstruction based
on the principle of Maximum Entropy as introduced by E.T. Jaynes (see, e.g., Ref.
7 and references therein). This method works as follows: Let us assume that a sub-
set {Gν} of system operators has been measured in the experiment, and that the
corresponding mean values are

〈Gν〉 = Tr (%Gν) . (1.8)

The question is how to select from a set of all density operators %G that satisfy the
condition (1.8) the one that is considered to be the “best” estimation of the true
density operator. Jaynes has suggested that among all density operators %G that
satisfy the condition (1.8) one should select that operator %est that maximizes the
von Neumann entropy.

In real physical situation it happens that infinite ensembles of identically pre-
pared particles are not available. Therefore, strictly speaking the reconstruction
methods that are based on the “perfect” knowledge of probability distributions are
not applicable. In these cases, when only finite set of registered “clicks” are ob-
tained from measurements one should use more appropriate methods. In particular,
the method based on Bayesian inversion (for details see Ref. 16, and references
therein) results in a reliable estimation of states of quantum systems. Alternatively,
the method of Maximum Likelihood can be employed (see, e.g., Ref. 17 and refer-
ences therein).

1.2.3 Quantum processes

If a quantum system is isolated from its environment, then it evolves unitarily, its
dynamics is described by a unitary operator U , and the density operator is trans-
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formed in a usual way %(out) = U%U †. On the other hand if the system interacts
with its environment, then its dynamics is described by a transformation

%(out) = E [%] , (1.9)

where E is a map that fulfills three conditions:

• The output density operator %(out) has to describe a physical state. Tr (E [%]) is
the probability that the process represented by E occurs when the system is
originally in the state %. Therefore 0 ≤ Tr (E [%]) ≤ 1 for all input states %.
That is, the map E is positive.

• E is a convex-linear map on a set of density operators. Therefore, if the initial
state % is expressed as a mixture % =

∑
j pj%j (such that pj ≥ 0 and

∑
j pj =

1), then

E

∑

j

pj%j


 =

∑

j

pjE [%j ] . (1.10)

• The map E has to complete positive.

In order to understand the condition of complete positivity, let us consider two
systems A and B. The state of this composite system is described by a density
operator %AB . Let us assume that this state is transformed in a following way:
the sub-system A undergoes a transformation described by the map EA while the
sub-system B is left unchanged, that is, we have

%
(out)
AB = (EA ⊗ IB) [%AB] , (1.11)

where IB is the identity operator on the system B. The condition of complete
positivity requires that the operator %

(out)
AB is positive for any input state %AB .

We note, that not all positive maps E are also completely positive. A typical ex-
ample of a positive but not completely positive operator is the so called Universal-
NOT gate ENOT, which is an anti-unitary transformation, that “flips” an input state
of a qubit |Ψ〉 = α|0〉 + β|1〉 into its antipode |Ψ⊥〉 = β∗|0〉 − α∗|1〉, such that
〈Ψ|Ψ⊥〉 = 0 for all possible input states |Ψ〉. It is easy to show the operation ENOT
that is supposed to act on a single qubit state as

|Ψ〉〈Ψ| → ENOT [|Ψ〉〈Ψ|] = |Ψ⊥〉〈Ψ⊥| (1.12)

is positive, since both the input and the output of the channel (1.12) are positive
density operators. In order to show that the operation is not completely positive
let us consider the action of the transformation ENOT ⊗ I on the singlet state |Ξ〉AB

which we defined as

|Ξ〉AB =
1√
2

(
|Ψ〉A|Ψ⊥〉B − |Ψ⊥〉A|Ψ〉B

)
. (1.13)
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This is a maximally entangled state which is SU(2)⊗ SU(2) invariant and it vio-
lates Bell inequalities (for more details see Ref. 1). The operator %AB = |Ξ〉〈Ξ| has
eigenvalues λ = {1, 0, 0, 0}. The output state %

(out)
AB of the action of the operator

ENOT ⊗ I on the singlet state (1.13) has the eigenvalues λ = {−1
2 , 1

2 , 1
2 , 1

2}. From

here it follows that the operator %
(out)
AB has the trace equal to unity, but it does not

describe a physical state since its eigenvalues are negative. From above it follows
that the map ENOT is positive but not complete positive (see also Sec. 5).

Every map E satisfies the three conditions specified above if and only if it can
be expressed as

E [%] =
∑

j

Ej%E†
j (1.14)

via the set of operators {Ej} that map the input Hilbert space to the output Hilbert
space and that satisfy the condition

∑

j

E†
jEj = I. (1.15)

1.2.4 Processes tomography

In order to determine the channel E we have to find out the operators Ej that define
this map via the decomposition Eq. (1.14). In order to determine operators Ej it is
useful to express them via a set of “fixed” operators Ẽk which form a basis for the
set of all operators on the state space. Therefore one can express arbitrary Ej as a
superposition of basis operators Ẽk:

Ej =
d2−1∑

k=0

ejkẼk (1.16)

with ejk being complex numbers. Now the channel E can be expressed as

E [%] =
d2−1∑

mn=0

χmnẼm%Ẽ†
n , (1.17)

where by construction the matrix χmn =
∑

j ejme∗nj us positive Hermitian. This
matrix completely describes the channel E (once the set of basis operators Ẽj is
fixed). In general the matrix χ contains d2(d2−1) independent real parameters. To
see this we just remind ourselves that E implements transformation between d× d
complex matrices (input and output states of the quantum system under considera-
tion). Therefore χ is a d2×d2 matrix. If we take into account that in- and out states
are described by Hermitian operators with the trace equal to unity [which results
into d2 constraints that are expressed by the completeness relation (1.15)] then we
see that the matrix χ is specified by d2(d2 − 1) real parameters. Complete recon-
struction of a quantum channel is equivalent to determination of these parameters.
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For this we need to have a capacity to prepare input test states and after the action
of the channel to perform complete reconstruction of the output states.

From above it follows that in order to perform a complete reconstruction of
an unknown CP map E we need a set d2 linearly independent test states {%k}d2−1

k=0

that are transformed by the channel. The states %
(out)
k = E [%k] are supposed to be

reconstructed (completely) and out of the correlations between the in and out states,
%k and %

(out)
k , respectively, the map (channel) can be reconstructed.

Since the map E is linear it can be reconstructed by the following inversion
procedure: Let the set of operators {%k}d2−1

k=0 form a linearly independent basis for
the space of d × d matrices (density operators). This means that any d × d matrix
can be written in a form of a linear combination of the basis operators %k. Usually
(see, e.g., Ref. 1) these basis operators are taken in the form %k = |k1〉〈k2|, where
{kj}d−1

j=0 is an orthonormal basis set in the Hilbert space H of the system under
consideration∗. We note that the transformation of the operator %k = |k1〉〈k2|
can be determined via performing preparation and measurement of four projectors,
namely:

|k1〉〈k2| = |+〉〈+|+ i|−〉〈−| − 1 + i

2
(|k1〉〈k1|+ |k2〉〈k2|) , (1.18)

where |+〉 = (|k1〉 + |k2〉)/
√

2 and |−〉 = (|k1〉 + i|k2〉)/
√

2, respectively. The
linearity of the map E implies that it is sufficient to determine the output states
E [|+〉〈+|], E [|−〉〈−|], E [|k1〉〈k1|], and E [|k2〉〈k2|] in order to determine the trans-
formation on the basis operators %k, i.e.,

E [|k1〉〈k2|] = E [|+〉〈+|] + iE [|−〉〈−|]− 1 + i

2
(E [|k1〉〈k2|] + E [|k1〉〈k2|]) .

(1.19)
Moreover, because the operators %k form a basis, we have

E [%k] =
d2−1∑

l=0

λkl%l , (1.20)

where the parameters λkl are determined by the measurement results in the operator
basis, i.e.,

λkl = Tr
(
Ẽk E [%l]

)
, (1.21)

where Ẽk = %k. This is a usual choice of the basis operators Ẽk because %k are
Hermitian operators, so they can play a role of genuine observables. To proceed we
use the expression

Ẽm%kẼ
†
n =

∑
βmn,kl%l , (1.22)

∗We assume that the number k is represented by a pair {k1, k2} such that k =
0, . . . , d2 − 1. We can think of k being expressed in a d-nary form via k1k2.
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where βmn,kl are complex numbers that are determined from a simple algebraic
relation between Ẽm and %k. If Ẽm = %m then given the fact that %x = |x1〉〈x2|
(x = l, m, n, k with 0 ≤ x ≤ d2 − 1) we find

βmn,kl = δl1,m1δn1,l2δm2,k1δk2,n2 . (1.23)

When we combine Eqs. (1.21) and (1.22) we obtain the equation

d2−1∑

k=0

d2−1∑

m,n=0

χmnβmn,kl%k =
d2−1∑

j=0

λlj%j . (1.24)

From the linear independence of the operators %k it follows that for each k

d2−1∑

m,n=0

χmnβmn,kl = λkl . (1.25)

This relation is necessary and sufficient condition for the matrix χ to give the cor-
rect quantum channel E . Formally we can express χ as

χmn =
d2−1∑

j,k=0

κmn,klλkl , (1.26)

where the matrix κ is the inverse of the d4 × d4 matrix β. From here one obtains
the reconstructed expression for the map E (for technical details see, e.g., Ref. 1

and references therein).

1.3 Structure of qubit channels

As discussed in the previous section (physical) quantum channels are described by
linear trace-preserving CP maps E defined on a set of density operators 1, 2, 18. Any
qubit channel E can be imagined as an affine transformation of a three-dimensional
Bloch vector ~r (representing a qubit state), i.e., ~r → ~r′ = T~r + ~t, where T is a
real 3x3 matrix and ~t is a translation 18. This form guarantees that the transforma-
tion E is Hermitian and trace preserving. The CP condition defines (non-trivial)
constraints on possible values of the involved parameters. In fact, the set of all
CP trace-preserving maps forms a specific convex subset of all affine transforma-
tions. Representing the qubit states by four-dimensional vectors ~v% = (1, ~r), where
the first element corresponds to the normalization of the state (Tr% = 1), one can
express the action of the channel E in a more compact matrix form:

E [%] =

(
1 ~0
~t T

) (
1
~r

)
=

(
1

~t + T~r

)
. (1.27)

In other words the qubit channels form 4x4 matrices of the affine form.
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Figure 1.2 Unital CP maps are embeded in the set of all positive unital maps (cube). The
CP maps form a tetrahedron with four unitary transformations in its vertices (extremal points)
I, x, y, z corresponding to the Pauli σ-matrices. The non-physical U-NOT operation (λ1 =
λ2 = λ3 = −1) and its optimal completely positive approximation quantum Universal-NOT
gate (λ1 = λ2 = λ3 = −1/3) are shown (for more details see Sec. 5).

The matrix T can be written in the so-called singular-value decomposition,
i.e., T = RUDRV with RU , RV corresponding to orthogonal rotations and D =
diag{λ1, λ2, λ3} being diagonal where λk are the singular values of T . This means
that any map E is a member of a less-parametric family of maps of the “diagonal
form” ΦE , i.e., E [%] = UΦE [V %V †]U † where U, V are unitary operators. The
reduction of parameters is very helpful, and most of the properties (including com-
plete positivity) of E are reflected by the properties of ΦE . The map E is CP only
if ΦE is. Let us note that ΦE is determined not only by the matrix D, but also by
a new translation vector ~τ = RU~t, i.e., under the action of the map ΦE the Bloch
sphere transforms as follows rj → r′j = λjrj + τj .

A special class of CP maps are the unital maps, that transform the total mixture
(% = I /2) into itself, E [I /2] = I /2. In this case ~t = ~τ = ~0, and the corresponding
map ΦE is uniquely specified by just three real parameters. The positivity of the
transformation ΦE results into conditions |λk| ≤ 1, while to fulfill the CP condition
we need that the four inequalities |λ1±λ2| ≤ |1±λ3| are satisfied. These conditions
specify a tetrahedron lying inside a cube of all positive unital maps. In this case the
extreme points represent four unitary transformations I , σx, σy, σz (see Fig.1.2).

1.4 Method of maximum likelihood

The MML is a general estimation scheme 17, 19 that has already been considered for
a reconstruction of quantum operations from incomplete data. It has been studied
by Hradil and Fiurášek 20, and by Sachci 21 (criticized in Ref. 22). The task of the
maximum likelihood in the process reconstruction is to find out a map E , for which
the likelihood is maximal. By the definition we assume that the estimated map has
to be CP. Let us now briefly describe the main idea of this method in more details.

Given the measured data represented by couples %k, Fk (%k is one of the test
states and Fk is a positive operator corresponding to the outcome of an individual
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measurement used in the kth run of the experiment) the likelihood functional is
defined by the formula

L(E) = − log
N∏

k=1

p(k|k) = −
N∑

k=1

log TrE [%k]Fk , (1.28)

where N is the total number of measurement events (“clicks”) and we used p(j|k) =
TrE [%k]Fj for conditional probability of using the test state %k and observing the
outcome Fj . The aim is to find a physical map Eest that maximizes this function,
i.e., L(Eest) = maxE L(E). This variational task is usually performed numerically.

Our approach (see also Ref. 8) is different from those described in Refs. 20–22

in the way that we find the maximum of the functional defined in Eq.(1.28). The
parametrization of E itself guarantees the trace-preserving condition. Hence only
the CP condition must be checked separately during the numerical maximization.
Instead of using the Lagrange multipliers (and increasing thereby the number of
parameters for the numerical procedure), we introduce the CP condition as an ex-
ternal boundary for a Nelder-Mead simplex algorithm. The maximization itself is
performed by the Mathematica 5.0 built-in function with following parameters:

• Method = Nelder-Mead
We chose the Simplex algorithm because it gives the most stable results with
the smallest memory requirements.

• Shrink ratio and Contract ratio = 0.95
These parameters are normally taken somewhere around 0.5. Their values
close to unity induce a rather slow “cooling” of the process and prevents
from falling into a local maxima. So the global minimum can be determined
reliably. The price to pay is, as usual, a longer time for a numerical search.

• Reflect ratio = 1.5
This parameter is bigger than the standard choice but it helps us to enhance
the probability of finding the global maximum.

In what follows we will analyze different examples of non-physical operations and
reconstructions that were obtained via MML method.

1.5 Universal-NOT gate

Let us assume the Universal-NOT (spin-flip) operation discussed in Sec. 2. This
operation corresponds to the inversion of the Bloch sphere (see Fig. 1.3). It is well
known that this inversion preserves angles (which is related to the scalar product
|〈Φ, Ψ〉| of rays). Therefore, by the arguments of the Wigner theorem the ideal
spin-flip operation must be implemented either by a unitary or by an anti-unitary
operation. Unitary operations correspond to proper rotations of the Bloch sphere,
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Figure 1.3 The state space of a qubit is the Bloch sphere. Pure states are represented by
points on the sphere, while statistical mixtures are points inside the sphere. The Universal-
NOT operation corresponds to the inversion of the sphere, since the states |Ψ〉 and |Ψ⊥〉
are antipodes.

whereas anti-unitary operations correspond to orthogonal transformations with de-
terminant −1. The spin-flip operation is an anti-unitary operation, i.e., it is not
completely positive (see Sec. 2).

Due to the fact that the tensor product of an anti-linear and a linear operator is
not correctly defined the Universal-NOT gate cannot be applied to a qubit while the
rest of the world is governed by unitary evolution.† Therefore the ideal (perfect)
Universal-NOT gate that would flip a qubit initially prepared in an arbitrary state
does not exist.

Obviously, if the state of the qubit is known, then we can always perform a
flip operation. In this situation the classical and quantum operations share many
similar features, since the knowledge of the state is a classical information, which
can be manipulated according to the rules of classical information processing (e.g.
known states can be copied, flipped, etc). But, the universality of the operation is
lost. That is, the gate which would flip the state |0〉 → |1〉, is not able to perform a
flip |(0〉+ |1〉)/√2 → (|0〉 − |1〉)/√2.

Since it is not possible to realize a perfect Universal-NOT gate 9 which would
flip an arbitrary (unknown) qubit state, it is of interest to study, what is the best
approximation to the perfect Universal-NOT gate. Here one can consider two pos-
sible scenarios. The first one is based on the measurement of input qubit(s) – using
the results of an optimal measurement one can manufacture an orthogonal qubit, or
any desired number of them. Obviously, the fidelity of the NOT operation in this
case is equal to the fidelity of estimation of the state of the input qubit(s). The sec-

†In fact, exactly this property makes the spin-flip operation so important in all criteria
of inseparability for two-qubit systems 23, 24.
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d(E NOT;E est
)

log2 (N/18)3 5 7 9 110.3500.3751/3
Figure 1.4 The distance d(ENOT, Eest) as a function of the number of measured outcomes N
in a logarithmic scale. We used 6 input states (eigenvectors of σx, σy, σz) and measured
σx, σy, σz. The distance converges to the theoretical value 1/3 that corresponds to the
optimal Universal-NOT.

ond scenario would be to approximate an anti-unitary transformation on a Hilbert
space of the input qubit(s) by a unitary transformation on a larger Hilbert space
which describes the input qubit(s) and ancillas.

It has been shown recently, that the best achievable fidelity of both flipping
scenarios is the same 10–12. That is, the fidelity of the optimal Universal-NOT gate
is equal to the fidelity of the best state-estimation performed on input qubits 25–27

(one might say, that in order to flip a qubit we have to transform it into a bit). More
detailed description of the unitary transformation realizing the quantum scenario
for the spin-flip operation can be found in Ref. 10–12. The experimental realization
of the optimal Universal-NOT gate has been reported in Ref. 14. In this experiment,
qubits were encoded in polarization states of photons.

As we have said, the Universal-NOT gate (ENOT : |Ψ〉 → |Ψ⊥〉) is associated
with the inversion of the Bloch sphere, i.e., ~r → −~r, which is not a CP map. It
represents an non-physical transformation specified by λ1 = λ2 = λ3 = −1. The
distance (see Fig. 1.2) between this map and the tetrahedron of completely positive
maps is extremal, i.e., it is the most non-physical map among linear transforma-
tions of a single qubit and can be performed only approximatively. A quantum
“machine” that optimally implements an approximation of the Universal-NOT is
represented by the map ẼNOT = diag{1,−1/3,−1/3,−1/3}. The distance 28 be-
tween the U-NOT gate and its optimal physical approximation reads

d(ẼNOT, ENOT) =
∫

states
d%Tr|(ENOT − ẼNOT)[%]| = 1/3 . (1.29)

This channel corresponds to the best CP approximation of the Universal-NOT gate
(the spin-flip operation).

For the estimation of the Universal-NOT gate via our numerical Gedanken ex-
periment we choose as inputs six test states - the eigenstates of σx, σy, σz . The
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data are generated as (random) results of three projective measurements σx, σy, σz

applied in order to perform the output state reconstruction. In order to analyze
the convergence of the method we have performed the reconstruction for differ-
ent number of detected events (“clicks”) and compared the distance between the
original map ENOT and the estimated map Eest. The result is plotted in Fig.1.4,
where we can see that the distance converges to 1/3 as calculated in Eq.(1.29). For
N = 100× 18 clicks, i.e., each measurement is performed 100 times per particular
input state, the algorithm leads us to the map

Eest =




1 0 0 0
−0.0002 −0.3316 −0.0074 0.0203
0.0138 −0.0031 −0.3334 0.0488
−0.0137 0.0298 −0.0117 −0.3336


 , (1.30)

which is very close [d(Eest, ẼNOT) = 0.0065] to the best approximation of the
Universal-NOT operation, i.e., ẼNOT = diag{1,−1/3,−1/3,−1/3}.

We conclude that for sufficiently large N the MML reconstruction gives us the
same result as a theoretical prediction derived in Ref. 10. In order to illustrate the
power of this approach we will find approximations of non-linear quantum me-
chanical transformations.

1.6 Non-linear transformations

Quantum mechanics is intrinsically linear theory and therefore non-linear trans-
formations cannot be considered as legitimate quantum maps. Nevertheless, one
can consider a toy model in which one looks for optimal physical approximations
of non-linear quantum transformations. Such maps are sometimes used as an “ef-
fective” description of specific processes. In what follows we will consider two
specific examples: The non-linear polarization rotation and the transformation gen-
erating powers of an input density operator.

1.6.1 Non-linear polarization rotation

Let us consider a non-linear transformation of a qubit defined by the relation 15:

Eθ[%] = ei θ
2
〈σz〉%σz%e−i θ

2
〈σz〉%σz . (1.31)

Unlike the Universal-NOT gate this map is non-linear. Four test states are not suf-
ficient to allow us to determine the action of non-linear maps. Therefore in our
Gedanken experiment we have to consider all possible input states (that cover the
whole Bloch sphere) as test states, but still we use only three different measure-
ments performed on the outcomes of the channel. These measurement data are
sufficient for the channel reconstruction.

Firstly, we present an analytic derivation of a physical approximation of Eθ.
This approximation is the closest physical map Ẽθ, i.e., d(Ẽθ, Eθ) = min. The map
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Figure 1.5 We present analytical as well as numerical results of an approximation of a non-
linear map Eθ for different values of the parameter θ (measured in radians). The numerical
(“experimental”) results shown in the graph in terms of a set of discrete points with error
bars are obtained via the MML. The theoretical approximation Ẽθ of the non-linear NPR map
is characterized by the parameter λ that is plotted (solid line) in the figure as a function of
the parameter θ. In the inset (a) is the Bloch sphere transformation for θ = 3 obtained by
MML and in (b) the same transformation obtained analytically.

Eθ exhibits two symmetries: the continuous U(1) symmetry (rotations around the
z-axis) and the discrete σx symmetry (rotation around the x-axis by π). The phys-
ical approximation Ẽθ should possess these properties as well. Exploiting the two
symmetries possible transformations of the Bloch vector are restricted as follows
x → λx, y → λy, z → pz. In the process of minimization the parameter p behaves
trivially and equals to unity. It means that Ẽθ is of the form Eλ = diag{1, λ, λ, 1}.
Our task is to minimize the distance d(Eθ, Eλ) =

∫
d%|Eθ[%] − Eλ[%]| in order to

find the physical approximation Ẽθ, i.e., the functional dependence of λ on θ.
We plot the parameter λ that specifies the best physical approximation of the

NPR map in Fig. 1.5. In the same figure we also present a result of the maximum
likelihood estimation of the NPR map based on a finite number of “measurements”.
Here, for every point (θ), the non-linear operation was applied to 1800 input states
that have been chosen randomly (via a Monte Carlo method so they uniformly
cover the whole Bloch sphere). These input states have been transformed accord-
ing to the non-linear transformation (1.31). Subsequently simulations of random
projective measurements have been performed. With these “experimental” data a
maximization procedure was performed as described in the previous section. The
resulting approximation specified by a value of λ (error bars shown in the graph
represent the variance in outcomes for subsequent runs with different test states,
but the same procedure parameters) transforms the original Bloch sphere as it is
shown in an inset for particular value θ = 3. The figure (a) corresponds to result
obtained by MML, and the figure (b) has been obtained via analytic calculations.
We see that the original Bloch sphere is transformed into an ellipsoid, one axis of
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which is significantly longer than the remaining two axes, that are of a comparable
length. The mean of these two lengths corresponds to the parameter λ that spec-
ifies the map. We conclude that the MML is in an excellent agreement with our
analytical calculations.

1.6.2 Powers of density operator: % −→ %2

Similar to the previous example, the map % −→ %2 is intrinsically non-linear and
we have to define the map for all possible inputs. The most general state of a qubit
can be written as %(~r) = 1/2(I + ~r.~σ) where ~σ = (σx, σy, σz) are Pauli matrices
and ~r is a real vector and ~r ≤ 1. In such a notation we can define the map under
consideration as follows:

E [%] =
1
2

(I + |~r| ~r.~σ) = |~r|% + (1− |~r|) I /2. (1.32)

Since the action of the map cannot be written as a matrix independent of % times %
the map is not linear. Hence it is a very interesting example to study reconstruction
schemes, as it is does not change the typical test states (pure states and complete
mixture state).

Due to the high symmetry of the map one would expect that the best physical
approximation is a contraction of the whole Bloch sphere

E [%]physical = k% + (1− k) I /2 (1.33)

with k ≤ 1. Indeed the result of the MML method shows within the precision given
by the finite number of test-states a result of the expected form

E [%]physical = 0.85 % + (1.00− 0.85) I /2. (1.34)

Even thought here we have considered only the second power of the density
operator % using the same arguments one can approximate channels that generate
an arbitrary power of the original density operator. In addition, taking into account
all symmetries associated with the transformation % −→ %k one can derive an
analytical expression for its physical (CP) approximation.

1.7 Analysis of results

With the three examples presented in previous section we have demonstrated the
power of the MML method to find physical approximations of operations that are
truly non-physical. In reality (when analyzing data of real experiments) one always
expects to have physical operations. However, if the data indicate a non-physical
operation, this may be a consequence of errors in experiment, wrong interpretation
of data, but also a failure of the reconstruction method.
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To rule out the last possibility, one has always to analyze precisely the outcome
of the procedure. By performing the maximization numerically, the functional it-
self is a rather simple function of the input data. The only challenges are boundary
conditions imposed by the CP condition. These may cause the search-engine to
“stick” in a point, which is not a local maxima of the functional, but is confined by
the boundary conditions. This case is easy to detect by calculating the CP condition
of the resulting operation and to check if the result is on the boundary of the CP
maps. If so, it is worthwhile to run the maximization procedure again with different
starting conditions. However, for parameters of the maximization procedure speci-
fied in Sec. 3 for every testing case the MML resulted in the proper maxima at the
first attempt.

If the result of the MML method is correct and the resulting operation is yet
on the boundary of CP maps, there is a strong evidence that the incoming data
were biased by some kind of errors. To analyze this problem closer, we have to
take into account not only the resulting operations, but also the value of L in Eq.
(1.28). This value defines the logarithm of the probability to obtain, for specified
input states (used in the MML method as test states), the same results as the ex-
perimental results. For proper data, this probability should be comparable to the
probability of a sequence of measured data produced directly by the reconstructed
operation. However, for improper data (in our examples these data are produced
by non-physical operations) the reconstructed operations may reproduce these data
with a much smaller probability.

We define the Ldata(E) to be the value of the functional (1.28) for the resulting
approximation. For the same set of test states as used in the original experiments
(denoted by %k) we perform a Gedanken-experiment. We apply the reconstructed
operation on every such state and then apply the measurement in the same direction
as in the original experiment (the resulting positive operators we denote F̄k). Then
we define

Ltest(E) = −
N∑

k=1

log TrE [%k]F̄k. (1.35)

The same procedure may be repeated sufficiently many times to obtain a typical
value of the functional (calculated as the mean of all runs and denoted by L̄test(E))
and the typical variance of this value σ(Ltest(E)).

In Tab. 1.1 results of the calculations for three examples presented in this Chap-
ter are shown. As one can clearly see, for the physical approximation of the
Universal-NOT gate the difference between Ldata(E) and L̄test(E) is rather big,
showing a clear evidence that the input data originated in an non-physical opera-
tion. This is, however, not the case for the non-linear polarization rotation and for
the transformation % −→ %2. In these cases the typical sequence (as a whole) of
the experimental data has a comparable probability to appear as any other sequence
produced by the reconstructed operation. So we may conclude that this method
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gives us a partial tool (a necessary condition) to identify data that would lead to
non-physical operations.

Ldata(E) L̄test(E) σ(Ltest(E))
U NOT -1371 -1472 6.79

NPR -1423 -1426 12.64
% −→ %2 -1343 -1335 17.44

Table 1.1 Values of the functional L for different examples of non-physical operations. For
the Universal-NOT gate it is clear that the probability to obtain sequence similar to the se-
quence given by the experimental data is much lower than to obtain a typical sequence of
data produced by the reconstructed operation. For other two examples the difference is not
significant.

1.8 Conclusions

In this Chapter we have shown that the method of maximum likelihood can be
efficiently used for derivation of physical approximations of non-physical maps
(both non-CP linear maps as well as non-linear quantum-mechanical transforma-
tions). We have applied this method for approximating qubit transformations (the
Universal-NOT gate, the non-linear polarization rotation and the map % −→ %2).
We have analyzed the resulting operations and provided a tool to detect the quality
of the input data.

Finally we note that in this Chapter we have considered an idealized situation
when the input states of test particles can be prepared perfectly, i.e., the action of
the initial-state preparator is totally known. Certainly, this is an approximation of a
real situation, when test states are prepared with a finite precision. This additional
source of uncertainty has to be taken into account in realistic estimation procedures
of quantum channels.
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