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The decoherence rate is a nonlinear channel parameter that describes quantitatively the decay of
the off-diagonal elements of a density operator in the decoherence basis. We address the question
of how to experimentally access such a nonlinear parameter directly without the need of complete
process tomography. In particular, we design a simple experiment working with two copies of the
channel, in which the registered mean value of a two-valued measurement directly determines the
value of the average decoherence rate. No prior knowledge of the decoherence basis is required.

I. INTRODUCTION

Complete quantum tomography is a very complex task
which rapidly becomes computationally intractable as
the number of subsystems composing the system un-
der investigation increases (see e.g., Ref. [1]). More
specifically, if we assume that d is the dimension of each
of the subsystems, then a system composed of N such
subsystems has dimension D = d~. The goal of state
(or channel) tomography is then to determine D? — 1
or D?(D? — 1) real parameters, respectively. That is,
the number of parameters grows exponentially with the
number N of quantum subsystems that comprise the
complete system. As a consequence, already for few-
qubit systems the tomography of associated quantum
devices requires an almost insurmountable experimental
and computational effort.

This enormous effort is the reason why physicists put
forth tasks that are more modest than complete tomog-
raphy. For instance, quite often the system under con-
sideration is not completely unknown; rather, some vital
prior information is available. If so, the estimation prob-
lem can become tractable. This idea has led to the de-
velopment of biased estimation schemes [2-5] that work
efficiently (i.e., with resource requirements scaling only
polynomially with system size) for states within a cer-
tain class of “expected states”. Other research lines do
without estimating all system parameters and properties
and instead focus on identifying parameters that are ex-
perimentally feasible, i.e., quantities that can be ”easily”
measured [6, 7]. Here we focus on one such parameter,
the (average) decoherence rate, and discuss the minimal
(informationally incomplete) resources needed for its es-
timation.

The phenomenon of decoherence is often recognized as
the main obstacle to the experimental implementation of
quantum information technologies. In its essence, it con-
verts a quantum superposition (with associated ampli-
tudes) into an incoherent mixture (with associated prob-
abilities). Mathematically, a loss of quantum coherence
is reflected by a decrease of the off-diagonal terms (ir-
respective of their initialization) of the system’s density

operator in the so-called decoherence basis, while the di-
agonal elements remain preserved. In the present paper
we will assume that the estimated processes are of this
form, and we will focus on possible methods of estima-
tion of their parameters, especially of the so-called de-
coherence rates, defined as fractions of absolute values
of the final and initial values of off-diagonal elements.
These parameters are not linear, which opens interesting
questions on their direct experimental accessibility. Al-
though in this paper we will consider only a very special
case of nonlinear parameters, our discussion and findings
are aiming to develop a general mathematical framework
dealing with such type of estimation problems.

In the next section we will briefly describe the relevant
properties of decoherence channels. In Section III we
will focus on an experimental setup to access directly
the decoherence rate (being a nonlinear parameter) for
qubit channels. We will generalize this consideration to
the case of d-dimensional quantum systems in Section I'V.
The achieved results will be applied in Section V to direct
estimation of the (inverse) decoherence rate of a double-
commutator master equation. In the final Section VI we
will briefly summarize our results and discuss a possible
experimental realization.

II. DECOHERENCE CHANNELS

Let us denote the Hilbert space of the considered sys-
tem by H. By L(H) we denote the set of linear operators
on H, with S(H) being the subset of density operators
(Tro = 1,0 > 0). States are identified with elements
of S(H), and (deterministic) quantum processes are de-
scribed by quantum channels, i.e., by completely positive
trace-preserving linear maps &€ : L(H) — L(H). These
properties guarantee that quantum channels map quan-
tum states into quantum states, i.e., £(S(H)) C S(H).
A distinguished role within the set of quantum channels
is played by unitary channels for which (o) = UoUT,
where UUT = UTU = I. Tt is quite common to identify
decoherence channels with non-unitary ones, although for
most of the channels there is no orthonormal basis that
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is invariant under the channel’s action. If such a basis
exists we say that the (non-unitary) channel is a pure
decoherence channel.

Elementary properties of pure decoherence channels
were studied in Refs. [8, 9]. Pure decoherence channels
are parametrized by a choice of the decoherence basis
and a choice of (complex) inverse decoherence rates, the
latter independently for each (mutually conjugated) pair
of off-diagonal terms. In particular, under the action of
a pure decoherence channel, elements of the density op-
erator expressed in the decoherence basis undergo the
transformation

ik > O = Wik Ojk » (2.1

and, in general, wjr = Wi, |lwjk] < 1 and wjj;

thus the transformation is characterized by D(D — 1
real parameters. Moreover, we need to specify addi-
tional D(D — 1) parameters in order to determine the
(unordered) decoherence basis. Altogether, we see that a
pure decoherence channel is characterized by 2D(D — 1)
real parameters, which is significantly less than for a
general channel but still exponential in the number of
the system’s constituents, even if the decoherence ba-
sis is known. Our goal is to design an experiment that
would allow us to determine the value of just a single pa-
rameter which characterizes the “average” decoherence.
Namely, we will investigate measurement of the quan-

tity A2 = ﬁ >k |wjkl?, which for qubits reduces

)
where |w;x| are the inverse decoherence rates (j # k)
)

to estimation of the inverse decoherence rate A. Simulta-
neously, we require that the experiment provides as little
information as possible about any other parameters. In
an ideal case the inverse decoherence rate \ will be mea-
sured as the mean value (or its function) of a specific
two-valued measurement. If this happens to be the case,
we say the parameter is measured directly.

III. QUBIT CASE

The most general qubit pure decoherence channel can
be written in the following form [9]

0= 0 =& =po+(1-pUeU',  (3.1)
where U is an arbitrary unitary operator. The eigen-
basis of U determines the decoherence basis. Suppose

U = €|0)(0| 4 |1)(1]. Then wp; = p + (1 — p)er@=b),
and the (unique) qubit inverse decoherence rate reads
A = |wo1| = /woiwio. Our goal is to propose an “opti-
mal” measurement that would allow us to determine this
parameter directly, while measuring as little redundant
other information as possible. In order to achieve our
goal we have to specify an initial probe state w and a
two-valued observable (outcomes associated with effects
E,I — E) such that

A= f(Tr(Ex®@D)W]E) , (3.2)

where f is a function on the interval [0,1]. According
to the Choi-Jamiolkowski isomorphism, linear maps F
from L(H) to L(K) are in one-to-one correspondence
with linear operators I’ defined on H ® IC. In particular,
F = (FRD)Q4] with @ =37, | [j®))(kekl € HOH
being an unnormalized version of the corresponding max-
imally entangled state. The complete positivity of chan-
nels translates into positivity of the operators. Writing
w= (ZQF)[Q4], U = (E2@T1)[Q4] and F = (ZQF*)[E],
Eq. (3.2) can be rewritten in the form

A= f(TrQsF) (3.3)

where F' is an element of a so-called process POVM
(PPOVM) (introduced in Refs. [13, 14]) which fully cap-
tures the adjustable degrees of freedom (choice of initial
probe state and final measurement) in the experiment.

A. Known decoherence basis

Let us suppose that the decoherence basis is known to
be the one in which the operator {24 is defined. Then its
Choi-Jamiolkowski representation reads

Q= 100)(00] + 1) (11] + wor 00) (11] + w1o[11) (003.4)

It follows from Eq. (3.3) that no single Hermitian oper-
ator @ allows for a determination of A = /woiwio =
Tr[Q,\Q], simply because this parameter is not linear.
However, there are several ways to determine the value
of A\ by combining expectation values of more than one
Hermitian operator. Since A = |(11]Q2,]00)| =: |TrQ\T|,
the decoherence parameter A can be accessed “directly”
by measuring the mean value of a non-Hermitian opera-
tor T = |00)(11]. In practice, this requires to realize an
experiment according to the following recipe:

1) Prepare a maximally entangled bipartite state and
send one of its subsystems through the decoherence chan-
nel.

2) Define observables X = {X;,X_,X,} and YV :
{Y,,Y_)Y,}, where Xy := %(|OO> + [11))((00] £ (11]
X, =I-X;—X_and Yy := $(]00)44[11))((00]£i(11]
Yo =I-Y, -Y_.

3) Then T = 3[(Xy — X_) + i(Y; — Y_)]; hence in
this case, the evaluation of \ requires the experimental
specification of two independent probabilities, because
for the given initial states the outcomes X, = Y, =
|01)(01] + |10)(10| cannot appear.

The following examples will demonstrate that if one
uses the observed probabilities in a nonlinear way (i.e., by
taking a multivariate function f = f(Xy,...,X,)), there
are even simpler experiments that reveal the value of .
The Xi,...,X, are linear operators whose expectation
values TrQ2) X, are experimentally measured. For exam-
ple, initialize the input state to be |[4+) = (|0) + [1))/v/2.

)
)7

The measurement of o, = [0)(1] + |1){(0] and o, =
—i(]0)(1| —|1)(0|) results in expectation values
z = TrlEx[|+) (+]]ow], (3.5)

y = TrlEx[l+)(+lloy], (3.6)



respectively. One can evaluate the rate A by using the
nonlinear formula

A=va?+y2.

It is clear that this procedure is experimentally much less
demanding than the previous alternative.

Let us change a bit our perspective and interpret the
same setup as an experiment in which two copies of the
channel are used in each run of the experiment. In other
words, let us assume that the test state is a two-qubit
state |[+)(+| ® |+)(+]| entering the channel £, ® £5. The
two-output state is then measured in a factorized mea-
surement o, ® o,. The general process measurement
scheme of such two-copies type leads to a statistics

p(F) = Tr[(Q\ @ Q\) F],

(3.7)

(3.8)

where F' are the operators (elements of the PPOVM act-
ing on a four-qubit system) describing the individual ob-
servations. In the considered case the outcomes are as-
sociated with the operators

Fii:=|++H)(H++|®]|xx, ty) Lz, 1y,

where | + z),| £ y) are the eigenvectors of o, and oy,
respectively. In particular,

p(Fy 1) = %[1 + Re(wo1)] - [1 £ Im(wo1)], (3.9)
and hence the observed probabilities are nonlinear
(quadratic) functions of the channel’s parameters wp; and
w1o. Taking into account the fact that x = Re(wp1) and
y = Im(wp1), we see how to play with the observed prob-
abilities to recover Eq. (3.7).

The message of this example is that certain nonlin-
ear parameters can be accessed in experiments in which
two copies of the channel are tested simultaneously. The
question that remains is whether the value of A can also
be observed directly by measuring a single experimen-
tal quantity @ only, i.e., whether there exists a single
observable @ such that A = f(Tr[(Q\ ® 2)Q)).

To this end let us consider yet another experiment in
which instead of initializing the two-qubit test system
in the state | + +)(4+ + |, we send the entangled vector
state |¢) (with the definition |¢4) := (]01) £]10))/v/2)
through the channel £, ® €. The output state reads

w' = %[I01><01| +[10)(10] + [wor[*(|01)(10] + [10)(01])] ,

where (|01)(10]+[10)(01])/2 = |¢1 ) (¢ |—|o-)(o-| =: Z
is a Hermitian operator and TrZ(|01)(01| + |10){10]) = 0.
That is, Z has the expectation value
/ 1 2

Tr[Zw'] = §|w01| ) (3.10)

and hence the statistics of the nonlocal, two-valued

measurement associated with the Hermitian operator Z
uniquely and directly determines the parameter A =

3

\/2(Z). This is exactly the direct method for estimat-
ing the inverse decoherence rate that we were looking
for. This measurement determines only a single indepen-
dent parameter which can be immediately and uniquely
transformed into the value of A.

Let us note that the process POVM considered above
is described by Fy = |¢1)(¢4| ® [¢+)(¢+| and F, =
|p4){d+| ® (|00)(00] + |11)(11]) being the output with
vanishing probability of appearance. It is straightforward
to verify that

T @ 0)Q) = slonl,  (311)
where Q = Fy — F_ = |¢1){(¢+|®Z. In conclusion, given
that the decoherence basis is known, the value of A can
be directly accessed and identified in a single, effectively
two-valued, measurement.

B. TUnknown decoherence basis

In this section we will ask the same question about the
inverse decoherence rate but relax the assumption that
the decoherence basis is known. Since the previous prob-
lem is a special case of this one, it is immediately evident
that there can be no single-copy experiment which mea-
sures the value of A directly. Therefore, let us focus on
the existence of direct two-copy experiments. Our goal is
to identify the observable () that one needs to measure
in order to access the value of A directly.

Let us start with a setup in which no ancilla is involved,
i.e., the test state p € S(H ® H) passes the channel £y ®
&y, and we measure the expected value of a Hermitian
operator M defined on H®H. Clearly, the scheme should
be basis-independent, meaning that the operators o and
M must both be U ® U-invariant (have the same form in
any basis of H). This implies that w = qot+ + (1 — q)o—,
where o1 := Py /dy, Py are projections onto symmetric
and antisymmetric subspaces of H ® H, respectively, and
dy := d(d = 1)/2 are the dimensions of the subspaces
spanned by Py. This is the well-known family of Werner
states. Let us stress that in this section we assume d = 2,
i.e., Py = [00)(00] +11)(11] +|64) (¢ ] and P_ = o_ =
|p—)(¢p—|. Similarly, any Hermitian operator M = al+bS
(with a, b real), where S := P, — P_ is the swap operator,
is U ® U invariant.

Let us recall once more that the expressions for Py
have the same form in any basis of 7. Therefore,

(Ex®E[PL] = A+ B+ N7, (3.12)
(Ex®ENP-]=B-)\2Z, (3.13)

where we used
A :=100)(00] + [11)(11], (3.14)
B = %(|01><01| +110)(10]), (3.15)

and the Hermitian operator Z = (]01)(10] + |10)(01])/2
is defined as in the previous section. Since S = A+ Z =



[00)(00] + [L1)(11] + |p1)(p| — [¢—)(¢—|, we find that
Tr[SA] = 2, Tr[SZ] = 1 and Tr[SB] = 0. Moreover,
TrA =2, TrB = 1 and TrZ = 0. Using all these identities
we obtain

(M) = Tr[(Ex ® Ex)[0]M]
- %Tr[M(A +B+M2)] + (1 — ) Te[M(B — \22)]

- §(2a+2b+a+w) +(1—q)(a—bX?)

1
=a+ §[2q+)\2(4q—3)]b. (3.16)
Setting a = 0, b = 1 (i.e., M = S) we obtain the direct
estimation formula for the inverse decoherence rate in its
simplest form

3(S) —2¢

A:
4q -3

(3.17)

Let us stress that the basis-dependent operators
A,B,Z mneed not be measured; only the basis-
independent swap operator S has to be measured. The
whole experiment, depicted in Fig. 1, is indeed basis-
independent and directly determines the value of the non-
linear parameter \, as desired.

P channel

FIG. 1. Direct inverse decoherence rate measurement, con-
sisting of a preparation of a Werner state, two applications of
the decoherence channel, and a SWAP measurement.

IV. AVERAGE INVERSE DECOHERENCE
RATE FOR QUDITS

The case of d-dimensional quantum systems (qudits) is
a lot more complicated because each pair of decoherence
basis elements |j), |k) is associated with its own inverse
decoherence rate A\ji = |w;i|. Let us perform the same
experiment as in the qubit case (see Fig. 1). Suppose
the initial test state is

0=gqo+ +(1—-qo-, (4.1)

where, as before, o = Py /d+. The procedure reads as
follows: Apply the channel £, ® £, where A now denotes
all the inverse decoherence rates Aj;. And then measure
the expectation value of the swap operator S.

Let us define for j # k the following (mutually orthog-
onal) unit vectors

1

Ot jk = \/5(|jk> + [kj)) -

(4.2)

Then
Pp=Y i) Gl + Y 164k br. gk, (4.3)
J i<k
Po=> "o k) (bl - (4.4)

j<k

Since Ex[|7)(k]] = wjklj) (k| and w;; = 1, we have that

(Ex @ ENPY] = 3 1) (il + (4.5)

43 37 (R GH] + A3k (ki)
J#k
(@ EIP] = 3 3 (FRVGH — X liR) (i) - (4.6)
Jj#k

Let us note that |wjr| = Ajx = Agj = |wk;| and hence

Tr(S(EX@ENP]) =d+0+> XNy, (47
i<k
Tr(S(EX@ENP-]) =0-> X (4.8)
i<k

Now it is straightforward to see that the measured aver-
age value of the swap operator in the considered experi-
ment equals

(9) = Tr(S(&x @ &x)[e))

q 1—¢q
= @Y N - —— > X
+ j<k - i<k

(4.9)

Since d_— = d(d—1)/2 coincides with the number of pairs
jk we may define the average decoherence rate A2 :=
7= 2. i<k A%, and obtain

(S) = N2(qd® —dy) + qd] /dy ; (4.10)
so the direct estimation formula for A2 reads
oS —ad (@D 2%

qd? —d 2qd — (d+1)

V. DOUBLE-COMMUTATOR MASTER
EQUATION

In case of qubits it was shown [9] that master equations
inducing pure decoherence channels are of the double-
commutator form

d 1

2= Lo =—7loH] llo. H, H], (5.1)

2%y
where H is a Hermitian operator. Let us call this oper-
ator “Hamiltonian” and its eigenvalues “eigenenergies”.
The channels £ = e*! are pure decoherence channels,
and the eigenbasis of H represents the decoherence basis.
This master equation has perfect sense in any dimension



(c.f. [10, 11]), and it is natural to ask whether our pre-
vious analysis can help somehow to directly measure the
parameter 7.

Suppose h; are the eigenenergies of H, and denote their
differences by Aji := hj — hy. Then the master equation
(5.1) reads

d

£ = Y - 5 (i- 32 ) pulidbl. 62)

J,k=0

Setting wjr = Ajre’i* in Eq. (2.1), it follows from £ = €9
that the generator of a general pure decoherence process
has the form

d
G(p) =D (1—=0d;) (X +iojn) pirli) (kI (5.3)
§,k=0

Comparing the real and imaginary parts of Egs. (5.2) and
(5.3) we have

Vik = Aji/h

—A2
Njk = Lap
gk exp ( 2712’7 )

With the help of Eq. (5.5) one can express the average
inverse decoherence rate as a function of ~,

(5.4)

and

(5.5)

(5.6)

The question is whether it is possible to invert this for-
mula. If this can be done then the experimental obser-
vation of A\? via measurement of (S) (as described in the
previous section) directly determines v = f(A\2). Clearly,
if complete information about the differences A, of the
eigenenergies of H is available (with the eigenbasis re-
maining unspecified), Eq. (5.6) specifies the parameter
~ implicitly. Unfortunately, we are not able to explic-
itly perform the inversion, nor to specify the conditions
under which such an inversion is possible, for an arbi-
trary Hamiltonian. Let us note that once the parameter
~ is specified, the knowledge of Aj, would allow us to
determine all inverse decoherence rates Ajy.

A special case in which the inversion is in fact possible
is a Hamiltonian which is equally gapped (for instance,
that of a linear harmonic oscillator), for which

A= (j = B)A, (5.7)
where A is the elementary energy gap. The absolute
values of the differences |j—k| take valuesn = 1,...,d—1,

and each of these appears exactly N, = d — n times in
the sum present in Eq. (5.6). Therefore, Eq. (5.6) can be
rewritten in the form

d—1 .
(d—n)K™ ,

1

— 1
2 =
A T (5.8)

n

where K := exp [-A2Z/(h*y)].

formula for gamma reads

The direct estimation

—A?
- 5.9
7T WK, (5.9)
where
- d—1 .
K, :=Root, |\2d_ =Y (d—n)K™ |, (5.10)
n=1

is the rth root of the above polynomial in the variable
K with r = 1 for even Hilbert space dimension d and
r = 2 for odd d. The ordering of roots is such that real
roots precede complex ones, with the real roots ordered
by size. We have verified numerically for all d up to 32,
that the rth root, Eq. (5.10), is the unique positive real
solution of Eq. (5.8).

Morevoer, the identity K, = exp [-A%/(h*y)] and
Egs. (5.5) and (5.7) enable us to write down the esti-
mation formula for the individual off-diagonal elements

A = KJJ=H/2 (5.11)
Let us note that in this case the knowledge of the actual
value of the gap A is not necessary.

In summary, the method of direct observation of the
average inverse decoherence rate A2 can be employed [cf.
Eq. (5.6)] to estimate the decoherence decay parameter y
which occurs in the double-commutator master equation
given in Eq. (5.1), provided that the additional knowl-
edge on the structure of energy gaps (spectrum) is avail-
able. This information can then also be used to determine
directly all individual inverse decoherence rates \;y.

VI. DISCUSSION AND CONCLUSIONS

In this paper we proposed an experimental setup that
can directly determine the value of the average inverse
decoherence rate, provided that the channel under con-
sideration is a so-called pure decoherence channel. The
experiment consists of the following steps:

1. Prepare a bipartite Werner state with ¢ # d /d>
[see Eq.(4.1)].

2. Apply the channel £\ ® Ey.

3. Perform the SWAP measurement and record the
expectation value.

4. Apply the estimation formula (4.11).

Let us recall that the SWAP measurement is a two-valued
measurement, and hence by definition, it can fix only
one parameter of £,. Therefore, no other information
about decoherence beyond its average rate is revealed.
For instance, the decoherence basis remains as unknown
as it was at the beginning.



Let us stress that no complicated system source is
needed in order to accomplish this measurement. In fact,
any state o can be turned into a Werner state by a so-
called twirling transformation

Wy = /dUU @UoUTaUT. (6.1)
Moreover, instead of a source of bipartite systems we can
employ two copies n®n produced by the same single par-
ticle source. Applying the same random unitary channel

on each of the copies will result in a Werner state with
some initial value of ¢ (see Fig. 2).

FIG. 2. Preparation of a two-partite Werner state using a
single-particle source and sampling of a random unitary chan-
nel.

This value is related to the purity of the single particle
source by
1 2
q=§(1+’I‘r77 ). (6.2)
This is the only information about the test state that
we really need, and it is well known how to measure the
purity directly [20, 21]: Take two copies, perform the
SWAP measurement and relate Trn? = TrSn @ n = (S).
If one uses this way of preparing the Werner state, the
accessible values of ¢ are limited by d, /d? < ¢ < 1.
Furthermore, let us note that the mixing procedure pre-
supposes that no information on the actual sequence of
the random Us is used in the estimation. Otherwise, the
procedure could not be seen as a preparation of a Werner
state.
The key operation in the preparation procedure is the
twirling. It is experimentally difficult to really sample
from the Haar measure over unitary channels. However,

this is not really needed, as the integration can be re-
placed by an average over only a discrete number of uni-
tary channels. This construction is known as a unitary
k-design [17-19]. In our particular case we are inter-
ested in a so-called 2-design, which is any probability
distribution {p1,...,p,} distributed over unitary opera-
tors {Ut, ..., U,} such that for all operators X,

/ AU XU =3 p;(U; @ U)X (U @ U).
JjeJ

In particular [17], for a d-dimensional quantum system
the uniform 2-design (i.e. p; = 1/n) consists of n >
d* — 2d? + 2 unitaries.

Let us summarize which resources are sufficient for di-
rect observation of the inverse decoherence rate: The ex-
perimenter needs a single particle source of (not com-
pletely mixed) states; he must be able to implement a
finite number of (undisclosed) unitaries forming the sup-
port of a 2-design; and finally, he must be able to perform
the SWAP measurement.

In conclusion, we have addressed the problem of direct
experimental measurement of a specific nonlinear chan-
nel parameter, the average inverse decoherence rate. We
have shown that experiments which collect statistics on
two copies of the channel perfectly serve this purpose.
Since many interesting channel properties (quantum ca-
pacities, rates, etc.) are not linear and cannot be accessed
directly in single-copy experiments, it is of practical im-
portance to understand more deeply the theory of direct
estimation of nonlinear channel parameters. The present
paper represents an important case study in this regard.
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