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Abstract 

We study entanglement and squeezing properties of a spin system of 4 qubits under the 

influence of the two-axis counter twisting Hamiltonian. Our initial spin state is a coherent 

one in the z-direction, which evolves in time. We choose the squeezing parameters given 

by Wineland and Kitagawa as the criteria of spin squeezing. The criterion of pairwise 

entanglement is chosen to be the concurrence and that of the bipartite entanglement, the 

linear entropy. We will study and plot the time dependence of the squeezing and 

entanglement parameters and also determine the time domains in which squeezing and 

entanglement properties can or can not exist simultaneously. 
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1.Introduction 

Spin squeezing [1-15] has applications in several fields of physics; among them we 

mention of interferometers and precision spectroscopy [16-19]. It is also closely related 

to quantum entanglement; therefore, it is relevant in quantum information and 

computation too [20-29]. In this work, we consider a spin system consisting of 4 qubits 

(four one-half spins), which is initially in a coherent state and study its time evolution via 

the well known two-axis countertwisting Hamiltonian [30] 
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2 −+ −= SS

i
H χ  .                                                                                                           (1) 

Obtaining the time dependent spin operators, we investigate the squeezing properties of 

the system, using the spin squeezing parameter 
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introduced by Kitagawa et al and also the squeezing parameter 
2
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2 ˆ)(2 SSS nW
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Δ=ξ ,                                                                                                (3) 

introduced by Wineland et al [31]. Here ⊥n̂ represents a direction perpendicular to the 

mean spin direction SSSn
rrr
ˆˆˆˆ ⋅= . We also study the entanglement properties of this 

system, considering linear entropy 

)(1 2
iL TrE ρ−= ,                                                                                                        (4) 

as a measure of bipartite entanglement (the entanglement between one spin and all the 

others)[23],
 

where iρ  is the reduced density matrix for the i th particle; and the 

concurrence
 

},0max{ 4321 λλλλ −−−=C ,                                                                               (5) 

as the measure of pairwise entanglement ( the entanglement of a pair of spins)[32,33]. 

Here, iλ  are the eigenvalues of the 4 by 4 matrix 

)()( jyiyijjyiyijij σσρσσρ ⊗⊗=Ρ ∗ ,                   (6) 

where, ijρ is the reduced density matrix element and ∗
ijρ  is its complex conjugate. 
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2. Spin squeezing 

A general spin S coherent state, is given by 
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where, θ and φ  are the polar and the azimuthal angle, respectively and 
z

mSS −, are 

eigenstates of 2S and zS [34]. This may be considered as an ensemble of  SN 2=  qubits 

( N one-half spins) with no interaction between them for the moment. Thus, the collective 

spin operators in the direction n̂ , may be given by 
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N

i
nS ,

1 2
1σ∑

=

= .                                                                                                                    (8) 

Where, nini ˆ.ˆ, σσ =  is the Pauli matrix in the n̂  direction for the i th spin. We consider a 

spin 2 coherent state along the z-direction, in our investigation, as follows  

2,2,,0 === SSφθ .                                                                                                   (9) 

We note that 

02,2ˆ2,22,2ˆ2,2 == yx SS ,                                                                                        (10) 

22,2ˆ2,2ˆˆ === zz SSS
r

,                                                                                         (11) 

1)()( 22 =Δ=Δ yx SS ;          (12) 

meaning that the average spin rests along the z direction and all the spins are upward at 

0=t . Moreover the uncertainty relation 

( ) ( ) 2
22 ˆ

4
1

zyx SSS ≥ΔΔ ,                                                                                                  (13) 

with the equality sign is satisfied here. 

     We now study the time evolution of this system via Hamiltonian (1). The nonzero 

matrix elements of H are given by  

χ6)()()()( 5,33,13,51,3 iHHHH =−=−== ,
 

χiHH 3)()( 4,22,4 =−= .                                                                                                    (14) 

Thus, our time dependent bra state is found to be 

))]32cos(1)(21(,0),32sin()21(,0),32cos(1)(21([2,2)( TTTeT iHt −+== &ψ ,(15) 
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where, the scaled time, tT χ=  has been defined. Using the above dynamically generated 

state we find 

0)(ˆ)())(ˆ)( == TSTTST yx ψψψψ ,                                                                        (16) 

implying that the dynamic evolution has not changed the average direction of spin and it 

steel stands along the z-axis. We therefore have 

)32cos(2)(ˆ)()(ˆ)( TTSTTST z == ψψψψ
r

.                                                         (17) 

     It is now worthwhile to look at the uncertainty relation at timeT , we find 

)32sin(3)34cos(
2
1

2
3)( 2 TTSx +−=Δ ,         (18) 

)32sin(3)34cos(
2
1

2
3)( 2 TTS y −−=Δ ,         (19) 

8/)]38cos(7[)()( 22 TSS yx +=ΔΔ ,                                                                               (20) 

and 

2
2

)]32[cos(ˆ
4
1 TSz = .         (21) 

Comparing (20) and (21) with (12) we observe a redistribution of uncertainties in 

different directions in this situation. For example, assuming
6
π

=T , we find 

62.3)( 2 =Δ xS ,  26.0)( 2 =Δ yS ,  95.0)()( 22 =ΔΔ yx SS ,  06.0ˆ
4
1 2

=zS ;                       (22) 

Implying that uncertainty along the x-axis has increased above the quantum limit, while it 

has decreased below that limit along the y-axis. The inequality sign in (13) is also 

satisfied. In fact, we are dealing with a squeezed state at this time, and those are exactly 

the characteristics that we expect for such a state. 

     To find the best squeezing direction, we rotate the coordinate system in the yx −  

plane by angleδ , but keep the z-axis fixed. Obviously, the uncertainties along the new 

coordinates are functions ofδ . Let’s define the direction )0,sin,(cosˆ δδ=⊥n in the yx −  

plain. We may write 

δδ sincos yxn SSS +=
⊥

.       (23) 

Therefore we find 
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)2cos()32sin(3)34cos(
2
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2
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⊥

.                                                                   (24)   

Minimizing (24) with respect to δ , we find 

)32sin(3)34cos(
2
1

2
3)( 2

min TTSn −−=Δ
⊥

.                                                              (25) 

This result shows that, the minimum uncertainty achievable along a direction in the yx −  

plain is a periodic function of time. This implies that although the mean spin direction 

remains along the z-direction, but the distribution of spin directions changes in time. To 

show this point more vividly, we have illustrated the quasi-probability distributions 
2

2,2,ϕθ=Q   and 
2

)(, TQ ψϕθ=  along with their contour plots in figures 1 and 2. 

The elliptic contours in figure 1, in contrast to the circular ones in figure 2, represent the 

redistribution of probabilities and uncertainties clearly. 
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Figure 1: Quasi-probability distribution and its contour plot at 0=T  
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Figure 2: Quasi-probability distribution and its contour plot at 1776.0=T  

 

     Now, using (2), (3) and (25), we express the squeezing parameters for the ⊥n̂ direction 

as follows. 

)32sin(3)34cos(
2
1

2
32 TTK −−=ξ  ,                                                                        (26) 
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2
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W

−−
=ξ                                                                       (27) 

 

We have plotted these parameters as a function of T  in figures 3. We note that the 

system becomes squeezed, according to both criteria, at the alternate time intervals, due 

to the dynamics provided by the Hamiltonian (1).  We note that 22
KW ξξ ≥ ; therefore, for 

the values of 12 <Wξ  , that the system is squeezed according to Wineland’s criterion, it is 

squeezed according to Kitagawa’s also. The reverse is not of course always true. 



 7

               

     Figure 3: plots of 2
Wξ  (dotted line), 2

Kξ (solid line) and CCS 3= (dashed line) versus time for 2=S  

. 

3. Spin entanglement 

     First we consider the bipartite entanglement of the system. We are dealing with 

identical entities, therefore due to exchange symmetry the reduced matrix 2
iρ  is the same 

for all the entities. Moreover, the reduced density matrix is just the one qubit density 

matrix and we have  
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where at the scaled time T  we have 

)32cos( Tz =σ , 0=yσ ,  0=xσ ,                                                                         (29) 

Using (4), (28) and (29) we finally obtain 

2/))32(sin(2/2/1 22 TE zL =−= σ .                                                                           (30) 

Now, defining the scaled entropy LS EE 2=  [35] and eliminating time between equations 

(30), (26) and (27) we find 
22 ))32(sin()1(2 TEE LS =−== η .                                                                              (31) 

Where, 2η  which may be called squeezing ratio, has been defined by 

12

2
2 ≤=

W

K

ξ
ξη .                                                                                                                    (32) 
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This is an interesting result; The scaled entropy which is the criterion of bipartite 

entanglement is a linear function of the squeezing ratio 2η and vice versa. The squeezing 

ratio satisfies the inequalities 10 2 ≤≤η ; thus, the scaled entropy changes in the 

range 01 ≥≥ SE . Moreover, smaller values of 2η correspond to larger bipartite 

entanglement. We have plotted scaled entropy as a function of time in figure (4). We like 

to emphasize that SE  is not a simple or monotonic function of either squeezing 

parameters 2
Kξ and 2

Wξ ; thus, we can not relate squeezing and bipartite phenomena in a 

simple manner and that was the reason for introducing the squeezing ratio, in the first 

place.  

 

                       

Figure 4: Plots of SE (dashed line), SC  (solid line) and 2
Wξ  (dotted line) versus time. 

     We now embark upon studying the pairwise entanglement of the system. First we 

calculate the reduced initial density matrix ijρ at 0=t . In fact, due to the exchange 

symmetry it is independent of i and j ; thus we drop the indices and call it ρ for 

simplicity. It has only the nonzero element 111 =ρ . The nonzero matrix elements of the 

dynamically generated time dependent density matrix are given by[36] 

3/))32cos(2())3(cos( 2
11 TT +=ρ , 

3/))32cos(2())3(sin( 2
44 TT −=ρ , 

32/))32(sin(4114 T== ρρ , 
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6/))32(sin( 2
33322322 T==== ρρρρ .                                                                         (33) 

We also calculate the nonzero matrix elements of   the operator )( jyiy σσ ⊗ ; we find 

1)()()()( 41143223 =⊗−=⊗−=⊗=⊗ yyyyyyyy σσσσσσσσ .                                     (34) 

Using (33) and (34) in (6), we finally find the nonzero matrix elements of the operator 

ijP , which we simply call P , as follows 

72/)]32)][sin(34cos(13[ 2
11 TTP −= , 

33/)]32cos(2)][3[sin()]3[cos(2 3
14 TTTP += , 

33/)]32cos(2[)]3)][sin(3[cos(2 3
41 TTTP −= , 

18/)]32[sin( 4
33322322 TPPPP ==== .                                                                          (35) 

The square root of the eigenvalues of this matrix in the descending order are found to be 

,6/))32(cos(4)32sin(32/))32(sin( 2
1 TTT −+=λ  

,32/))32(sin(6/))32(cos(4)32sin( 2
2 TTT −−=λ  

3/))32(sin( 2
3 T=λ , 

04 =λ .                                                                                                                           (36) 

Finally, application of (36) in (5), gives us the scaled concurrence CCS 3=  as a function 

of the scaled time T  as follows 
2))32(sin()32sin(3 TTCS −= .                                                                               (37) 

Eliminating time between (37) and (26) we find the following linear relation between SC  

and 2
Kξ  

]1[3 2
KS CC ξ−== .                                                                                                         (38) 

We have plotted the function SC  in figure (3). We observe that, if 12 =Kξ  we have 0=SC ; 

that is if the system is not squeezed it is not pairwise entangled either. However, if 12 <Kξ , 

the system is squeezed according to Kitagawa’s criterion, then we have 0>SC and the 

system is also pairwise entangled simultaneously and vice versa.  

     We may also write  
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S

S
W E

C
−
−

=
1
12ξ .                                                                                                                  (39) 

We have plotted the three functions SC , SE and 2
Wξ  in figure 4. For 12 =Wξ  the system is 

not squeezed and 0== SS EC , that is we do not have entanglement either. But, it is 

squeezed for 12 <Wξ , which requires SS EC > ; this may be considered as a criterion of the 

existence of squeezing in this system and vice versa. 

    We now eliminate time between (31) and (37) to obtain the following relation between 

SC  and SE  

SSS EEC −= 3  .                                                                                                           (40) 

We have plotted SC  as a function of SE in figure 5. Barring one maximum point at 

750.0=SE , it is a monotonic function of SE ; increases for the range )75.0,0(=SE , 

while decreases for the range )1,75.0(=SE .     

 
Figure 5: SC  versus SE  

4. Discussion and conclusions 

       We considered a four-qubit initial coherent state and studied its time evolution via 

the two-axis countertwisting Hamiltonian. It was observed that the average spin direction 

remains along the initial one, but the quasi-probability distribution for spin direction 

becomes asymmetrical about the z-axis, in contrast to the initial coherent case. We 

showed that the parameters for K-squeezing (defined by Kitagawa et al) and W-

squeezing (defined by Wineland et al) are periodic functions of time. Barring some 
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separate instances of time, the system was found to be always K-squeezed, but only W-

squeezed in alternate time intervals. It was also noted that if the system is W-squeezed it 

will be K-squeezed also, but the reverse is not necessarily true.       

We proved that the scaled entropy, which is the criterion of bipartite entanglement is a 

linear function of the squeezing ratio 2η and vice versa. 2η satisfies the inequalities 

10 2 ≤≤η ; thus, the scaled entropy changes in the range 01 ≥≥ SE . Moreover, smaller 

values of 2η correspond to deeper bipartite entanglement.  

We also showed that pairwise entanglement is a linear function of K-squeezing parameter 

and the system is K-squeezed if it is pairwise entangled and vice versa.  

If 12 <Wξ (W-squeezing), the inequality SS EC >  is satisfied and vice versa; thus, the 

latter inequality may be considered as the criterion of the existence of W-squeezing and 

vice versa. Finally, we showed that barring one maximum point at 750.0=SE , SC  is a 

monotonic increasing or decreasing function of SE . 
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