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Abstract—The intimate connection between the Banach space entangled states involves the so called entanglement witness
wavelet reconstruction method for each unitary representation of (EW) [9], [10]. Some of entanglement measures and best sepa-
a given group and homogenous space studied in the last work and 5516 state conditions using semidefinite programming method

guantum entanglement description using group theory consid- . . - - Lo
ered. We present, universal description of quantum entanglement is given in [12], [13], [14], [15]. However, no investigation of

using group theory and non-commutative characteristic functions the separability problem has been carried out there, as the
for homogenous space and projective representation of group on work of Gu predates the seminal paper of Werner[3]. On the

Banach spaces for some of well known examples, such as: Moyalpther side, the method of characteristic functions has already
representation for a spin, Dihedral group and permutation group.  peen successfully applied for studying other then entanglement
Keywords: Quantum Entanglement, Separability criteria, . -
Wavelets, Banach Space, Homogenous Space, Projective Groudgenume quar_1tum features of quantum statgs n .the works
Representations on non-classical states of quantum harmonic oscillator[16].
PACs Index: 03.65.Ud Korbicz and Lewenstein by choosing a compact group G and
the set of its irreducible, unitary representation as the main
ingredients of the mathematical representation of the state
space, can define characteristic functions which are applied
for testing states’ entanglements. Although they do not present
any new entanglement test, their results offer a new point of
view on the separability problem. Moreover, they were able to
translate the positivity of partial transpose (PPT) criterion[4]
into the group theoretical language[17]. On the other hand
I. INTRODUCTION group theoretical approach to quantum entanglement and to-
Entanglement is one of the most fascinating features wfography with wavelet transform has been obtained by some
guantum mechanics. As Einstein, Podolsky and Rosen Hithors [18].
pointed out, the quantum states of two physically separatedA general framework is already presented for the unification
systems that interacted in the past can defy our intuitions abaiit the Hilbert space wavelets transformation on the one
the outcome of local measurements. Moreover, it has recerttignd, and quasi-distributions and tomographic transformation
been recognized that entanglement is a very important resouassociated with a given pure quantum states on the other hand
in qguantum information processing[2]. A bipartite mixed statl9]. Here in this manuscript we are trying to establish the
is said to be separable [3] (not entangled) if considered asnéimate connection between the quantum entanglement using
convex combination of pure product states. group theory and non-commutative characteristic functions
A separability criterion is based on a simple property thér homogenous space and projective representation of group
can be shown to hold for every separable state. If some state Banach spaces for some of well known examples, such
does not satisfy this property, then it must be entangled. Bag: Moyal representation for a spin, Dihedral group and
the converse does not necessarily imply the state to be sepaexmutation group, all which can be represented by density
ble. One of the first and most widely used related criterion isatrices. For density matrices, one defines the nornv@s
the Positive Partial Transpose (PPT) criterion, introduced llyis implies the absence of a scalar product in the density
Peres [4]. Furthermore, the necessary and sufficient conditimatrix space (so it is not a Hilbert space but a Banach space)
for separability in Hy, ® Hy and Ho, ® Hs was shown by [24], [25]. Therefore, it is natural to do quantum tomography
Horodeckis [5], which was based on a previous work bef any density matrix by using the wavelet transform and
Woronowicz [6]. However, in higher dimensions, there arigs inverse in Banach space connected with the correspond-
PPT states that are nonetheless entangled, as was first shingngroup representation associated with that density matrix.
in [7], based on [6]. These states are called bound entanglguds obtained quantum tomography by Banach space wavelet
states because they have the peculiar property that no entasthod for density states is completely consistent with the
glement can be distilled from them by local operations [8fjuantum tomography obtained by other methods.
[10]. Another approach to distinguish separable states fromThe paper is organized as follows:



In section-2 we define wavelet transform based on homogedlet G be a locally compact group with left Haar measure
neous space and projective representation spaces on Banhcland Z(H) be a center of group H. Lét be a continuous
space. In section-3 a brief recapitulation of group theoreticapresentation of the group G add= G/Z(H) be a central
approach to entanglement for irreducible representation of agxtension. In the last subsection we saw thdias been lifted
compact group is studied. In section-4 we study group the an ordinary representation 6f().
retical approach to entanglement associated with the unitanyjLet £(3) be the space of bounded linear operdsor- B
irreducible representation on homogenous space for MoyalBanach space. We will say that € B is a vacuum vector
representation of a spin and projective representation of Dihiefor all h € Z(H) we have7(h)by = x(h)by and also the
dral and Permutation group by using the Banach space wavelet of vectord, = 7 (x)by forms a family of coherent states,
transform method. The paper ends with a brief conclusion.if there exists a continuous non-zero linear functioigat 5*

( called test functional ) and a vectly € B ( called vacuum

II. WAVELET TRANSFORM IN BANACH SPACES ON vector) such that

HOMOGENEOUS SPACE AND BASED ON PROJECTIVE
REPRESENTATION OF GROUP C(bo, by) = / < 7z bo, lo >< 7(x)by, ly > du(z),

Wavelet transform on homogeneous space: X 4)

The following is a brief recapitulation of some aspect® non-zero and finite, which is known as the admissibility
of the theory of wavelets on homogeneous space. We om8jation.
mention those concepts that will be needed in the sequelif @he centerZ(H) is non-trivial, one does not need to know
more detailed treatment may be found for example in [21javelet transform on the whole group G, but it should be
[20]. Let G be locally compact group with left Haar measurgefined on only the central extensiafi/Z(H), then the
dp and H be a closed subgroup of G. Letbe a continuous reduced wavelet transforiy to a central extension space
representation of a group aild = G/ H homogeneous space.of function L is defined by a projective representatidrof

We could define a representation for homogeneous spage« G on B and a test functiondl, € B* such that[21]
X x X in the spaceC(B) of bounded linear operatofs — B: W B Lo(X) : O — O(z) = WO (x)

T X x X = L(L(B): 0 = U(@)OU ("), (D) =<7z 10,1y >=< O0,7*(x)lp > VzeX, (5)

where ifz; is equal to¢2, Fhe represen.tatiorll is called adjointyhere+* is dual of .
representation, and, i, is equal to identity operator, the
representation is called left representation of homogeneous!!: QUANTUM ENTANGLEMENT VIA GROUP THEORY
space. WITH WAVELET TRANSFORM ONBANACH SPACE

Let £(B) be the space of bounded linear operafor~ B Group tomography of a compact group G, with an irre-
in Banach space. We will say thag € B is a vacuum vector ducible unitary representation U acting on separable Hilbert
if for all h € H; x Hy we haver(h)by = x(h)bo and also the space’, means that, every element &(*), the Banach
set of vectord,, ,, = (z1,22)by forms a family of coherent algebra of bounded linear operators acting &n can be
states, if there exists a continuous non-zero linear functiortainstructed by the setU(g),g € G} according to formula
lo € B* ( called test functional ) and a vectbds € B ( called (6), where the se{U(g),g € G} is known as tomographic

vacuum vector) such that set and®(g) = Tr[U'(g)O] is sampling set or tomogram set
, of a given operatoiO [33]. When H is finite-dimensional,
C(bo, by) = / < m(xyt 25 bo, lo > the hypothesis thafU(g)} is a tomographic set is sufficient
X to reconstruct any given operator from the tomographic set
< w(@1, 22)by, ly > dp(wy, x2), (2) by using (6), but the case afim(H) = oo needs a further

. o o ~___condition to make sure that every expression converges and
is non-zero and finite, which is known as the admissibility,a¢ it can be attributed to a precise mathematical meaning. If

relation. . o O is a trace-class operator Gfiand {U(g)} is a tomographic
If the subgroup H is non-trivial, one does not need tOget and satisfies (4) then we have

know wavelet transform on the whole group G, but it should

be defined on only the homogeneous spéteH, then the 0= /du(g)Tr[UT(g)OA]U(g). (6)
reduced wavelet transfor) to a homogeneous space of

function L, is defined by a representation of G’ x G on Now we try to obtain the above explained tomography via

B and a test functional, € 5* such that[21] wavelet transforms in Banach space. _
R ) R In order to do so, we need choose the tomographic set
W:iB— La(X x X): O — O(21,22) = WO](21, 22) U(g) as a continuous irreducible representation of the wavelet

transformation and the identity operator as a vacuum vector.
Therefore, the corresponding wavelet transformation takes the
following form:

=< ﬂ(xfl,xgl)é,lo >=< O,W*(ml,xg)lo > Vry,z0 € X,
3
wherer* is dual of . R . .
Wavelet transform based on projective representation: W:B— F(g):0 — ¢(9) =< 0,1, >



=< 0,U(g)ly >=< OU(g)t,1y >=tr(OU(g)").  (7) Then the wavelet transform in this Banach space with the test
functional,
Korbicz and Lewenstein proceeded to the reformulation of
the separability problem in terms of the group theoretical lo(p) =Tr(p Y A™|m,n.)(m,n.|), (13)
language[17]. For that, let us assume thas separable, i.e., m
there exist a decomposition of type = > . pilu;)(ui| ® g given by:
|vi)(v;]. By definition of characteristic function[17] or sam-

pling function ®,(g1, g2) from wavelet transformation in Ba- Wh = ¢(n) =< W(n)T(j, lo >
nach space with above density matrix for irreducible represen-
tation U(g) := Ul(g1) ® Us(go) it obtain that [17] _ TT(UnTﬁUAn ZAm | m,n. ><m,n. |), (14)
m
®,(g1,92) = tr(pU(g sz (g1)ni(g2),  (8)

then we have:

V[\]/?ge;)evf(;(.gl) < u | U(gl)uz >, 771(92) < | ¢<n) — TT(pAUnZAm | m,n, >< m,n, | UnT) — TT(OA”).
Now we state the following results that are standard and are

derived in reference [17]. In the wavelet notation for the two partite spin system, the
Theorem 1 Let G be a compact Kinematical group angrreducible representatio5U(2) x SU(2) is II(n,n') =

m, 7 are irreducible representation. A statés separable iff its H(n) ® H(h’) and the test functional is defined

characteristic function can be written in the fofg (g1, g2) = )

> piKi(g1)ni(g2), where K, n; € P1(G) (wherePy(G) is  lo(p) = Tr(p>_ A™m,n.)(m,n.|@>  A™ |[m',nl)(m',nl]),

the space of all normalized positive definite functions @n m m’

) and the equality holds almost everywhere w.r.t. the Haar (19)

measure dg oK x G. then the characteristic function is defined as:
Theorem 2 Let G be a compact Kinematical group and- d(n,n') =< 7r(nA n’) O lo >=

are irreducible representations@tand p is an arbitrary state ’ ’ '

in H, ®H: The condition p is separable}- ¢, € P(GRG st P A m

leads either to PPT criterion for whenr ~ 7’; or ig empt)y Tr(Un’ @ U pUn © Une ZA [ m,ns ><m;n, |

otherwise[17].

Where7(g) := m(g~") and (g1, 92) := ¢(g; ", g2)- @A™ | m nl, >< w0l ), (16)

m

A. Moyal-type representations for a spin
ya-iyp P P then we have:

For a spins, in [22] is defined a ‘Stratonovich-Weyl
correspondence as a rule which maps each operatam d(n,n') = Tr(ﬁUn @ U, ZAm | myns >< myn, |
the (2s + 1)-dimensional Hilbert spacé{; to a function on '
the phase space of the classical s@8, A discrete Moyall

formalism is defined as [23]. &A™ | m nl, ><m | v, oU,") =
Apn = UaAn, U, ) '
where U, represents a rotation which maps the veaigrto Tr(pA™®A™). (a7
n.
By defining the associated kernel as
A _ From theorems 1 and 2y is separable iff characteristic
An = |s,n)(s,n| = n)(n], (10)  function written as (8).
s As an example we consid8r 3 representation afU (2) ®
AR = Z A™|m,n)(m,n|. (11) SU(2) group. Three dimensional representation of SO(3)
m——s group as a rotatio/,, is defined [17] as
In the wavelet notation, the Banach space (& + 1)%- A1 A1z Ais
dimensional and group iSU(2), the subgroup is U(1) and Ui(gr) = | A1 Aoz Ass
measure isdu(n) = 2%ld(n) and the unitary irreducible Azt Az2 Ass
representation of group $,, which is the result of with adjoint
representation on the any operators in Banach space: 11 A2 Al

A Usz(g2) = A1 Agg /\/23 ) (18)
#(n)p = UnpU}. (12) N N Mg



where )\;; and Xj,z’,j = 1,2,3 are defined by using threewherel <i<n-—-1,1<j<n-2,m <[— 2. Heret; are

?

Euler angles. Th& ® 3 un-normalized separable states [10}ranspositions,

[11] is defined as
pm = > (k) G| = D D @ |1+ m) {1+ m],

3w @ |+ R+ K,

1,k

S WO | @ LR (4K,

1,1k

p{m = Z |¢mk><wm/k| =

P = Z [Ynk k) (Y] =

(19)
wheren = 0,1,2

states but we consider a particular simple cage Then
characteristic functiom® (g1, g2) for po is obtained as

2
d(91592) = TT(ﬁAn ® Uy Z A" | m><m|
m=0
2
® Y A" |m' ><w/ |UfeU)).
m’=0

By some calculation we have

2 3 2 3
®(g1,92) = DA™ XimAmi) Y A™ O i Ari)
m=0 i=1

= m’=0 =1

(20)

2 2
=3 A"y A =1
m=0 m’=0
By definition of K; 91) = <Z|U1(gl>|l> = Zj‘:l >\ji/\ij =1
and 7;(g2) = (i|U2(g2)|i) = Y0_; Ajidij = L. Therefore,
characteristic function is rewritten as

(21)

3
O(g1,92) = »_ Ki(gn)migz) = 1, (22)
i=1

m = 0,1,2. One can show that any
convex sum of these states is separable and lie at the boun
of the separable region [10]. We can obtain characteri
function ®(g;,g2) for any convex sum of above separable

tl = (12),t2 = (23)7 ~-~7tn71 = (n —1 n) (24)
Closely related taS,, is the groupsS,,
~ ! ’ 2 ’ ’
S =A{2t0, o tp_in | 27 =1L 2t =ty 2,
’ 2 ’ ! b
lig =72, (tj;j+1tj+1;j+2)3 =z,
t:n;m—s-lt;;l+l = Zt;;l—&-lt;n;m,+1}ﬂ (25)

wherel<i<n—-1,1<j<n—-2,m<I[-2.
A celebrated theorem of Schur (Schur, 1911 [26]) states the

?Sﬁ%wing:

stuc

(i) The groupsS,, has order2(n!).
(i) The subgroup{1, z} is central, and is contained in the
commutator subgroup of,,, provided n = 4.

(i) S,/{1,2} ~S,.

(iv) If n < 4, then every projective representation $f is
projectively equivalent to a linear representation.

(v) If n < 4, then every projective representation $f is
projectively equivalent to a representation

p(Sn) = {7 (t1), ooy F(tn1) : 7 (t;)?
(7)) (t41))* = 2, 7 (tm) 7 (1) = 27 (L) 7 (tm)}, (26)

wherel <i<n-1,1<j<n—-2,m<l—2andz = +1.

In the case: = +1, 7 is a linear representation ¢f,.

The groups, is called the representation group f6y,.

The most elegant way to construct a projective representa-
tion #(S,) of S, is by using the complex Clifford algebra
Cliff o(V, g) = C,, associated with the real vector spdce=
nR,

:Z’

v it = 29(visv5) (27)

Here {i}_, is an orthonormal basis of V with respect to the
symmetric bilinear form

9(%i,73) = +6i5- (28)
Clearly, any subspac¥ of V = nR generates a subalgebra

which is agreement with Theorem 1 and we show that thiliff - (V, 3), whereg is the restriction of g tol x V . A

state is separable in the similar way one can showghaind
p2 are separable states.

B. Quantum Entanglement based on projective represen-

tation of permutation group

particularly interesting case is realized whinis

n n
‘72{2 Y Zam =0}
m=1 m=1

of codimension one, with the corresponding subalgebra de-

(29)

Let us consider projective representations of the symmetigiaq byC,,_1 [27]. If we consider a special basfg., 21_211 c

(permutation) groups that have long been known to math?‘(which is not orthonormal) defined by
maticians, but received little attention from physicists. Such 1

representations were overlooked in physics much like projec- thimir = —=Ym + Ym+1)
tive representations of the rotation groups were overlooked in ’ V2

the early days of quantum mechanics. One especially usedwén the group generated by this basis is isomorphi6,to
presentation of the symmetric grosp on n elements is given This can be seen by mapping to ¢, and z to -1, and by

(30)

m=1,..n—1,

by

Sn - {th ---7tn—1 : t? = 17 (tjtj-‘rl)g = 1atmtl = tlt'rn}a
(23)

noticing that
HForm=1,...,n—1:

2
t/m,nn+1 = 717 (31)



2) Forn—2 > j: wherel is the identity operator. The positive semidefiniteness

(it n)® = —1; 32) condition for the matrix@,. g3 = ¢(g;1g5,g;,1gg/), where
AR AR AR ’ these matrices are completely determined by their first rows

yForn—1>¢>m+ 1 and the group multiplication table.

A (33) Proposition: A function ¢ € P(G x G) is separable iff its

mim+17g;q+1 gatlimim+1> matrix ® can be convexly decomposed as follows

as can be checked by direct calculation. One choice for the

matrices is provided by the following construction (Brauer and ¢ = ZpiKi ® N, (40)

Weyl, 1935 [28]): i

Yom-1=03® .03 (1) ®1...® 1,
Yom = 03 & ...03 & (0’2) ®1..®1,

where for each, K;, N; > 0 and are defined by the group
(34) multiplication table fork;, n;, on the other word is separable

m:1,2,3,...k, if ®T Z 0 ((I)aa’ﬂﬂ/ >0 = (I>[3a’,aﬂ’ > 0) Now by
] » calculating® matrix for the above Werner state one can show
for n = 2k. Here 01,05 occur in the m-th position, {4147 will be positive if0 < f < 1 i.e., the Werner state is

the product involves M factors, ang,, 02,03 are the Pauli separable i) < f < 1.

matrices. Ifn = 2k + 1, we first add one more matrix, -0

C. Quantum Entanglement of Dihedral Group Based on Pro-
jective Representation

An irreducible module of,,_; restricts that representation to  {ere we consider the tomography of dihedral group by
the irreducible representation 6F,, since{t;,};_," gener- using irreducible projective representation of this group.

atesC,_, as an algebra [27]. The simplest (irreducible) non- The dihedral groug,, of order2n defined by [30], [27]
trivial projective representations 6f, are already surprisingly

Yor+1 = 03 ® ... ® o3 (k factors. (35)

intricate and have dimensions which grow exponentially with ~ Dy, =< a,bla” = 1,6> =1,bab™ ' =a™' > . (41)
n. They are intimately related to spinor representations E]:at ¢ be a primitive nth root of 1 and let

SO(n)[29].

Now we try to obtain the characteristic function via wavelets x:D, x D, —c*, (42)

transform in Banach space based on projective representation
of permutation group (spinor representation of permutatidtf defined by [31]
group). In order to do so, we need to choose the tomographic x(ai,a?b*) =1 and x(a'b,alb*) = &, (43)
Set{frih---,im = 7117;277;)3’ oY
i1,42,....,im = {0,1}} as a projective representation of thdor all i,j € {0,1,2,....,n — 1} andk € {0, 1}.
wavelet transformation and the identity operator as a vacuumFor n=2m is even, for eachc {1,...,m — 1} put
vector. Therefore, the corresponding wavelet transformation r m
. € 0 € 0
takes the following form: A, = ( , ) , A= ( )

0 e~ 0 &m
W:B— LQ(G) : [3 = ﬁ(il, ,Zm) =
B _ 0 1 a4
< Pil(ig,sin) >=< Py Tiy,. i lo >=< ﬁﬂl,“,7i7n,lo > T\ 1 0 ) (44)
= Tr(ﬁﬂl,...,im)- (36) and for n=2m+1 is odd, for eache {1,...,m} put [32] is
In the wavelet notation for the two partite permutation group, A — e" 0 B 0 1 (45)
for simplicity we reduce our considerations on the irreducible L0 e )T\l 0 )

representationSy x Sy is (g1, 92) = mi; i, ® T, 4,, With . .
Tiyis = 01052, 11,12 = {0, 1}, and the characteristic functionand let. - Dn — GL(2,c) be defined by
Is defined as #(i,j) =7 (a'V) = AB], {i€{0,1,..,n—1},j = {0,1}}.
11,925 51, J2) =< s l(iy inij1 o) =< P> Tiy inij1,jal0 > (46)
901, 8231, J2) =< P lisiaiin.) P> Tia iaif1 20 37y Now we try to obtain the above explained tomography via
using test functional, via trace function the characteristicV@velets transform in Banach space based on projective
function is reduced to representation. Inbo_rder to do. so, we need to _choose the
o pot ot tomographic seti(i,j) as a projective representation of the
P(in,i2; 15 52) =< PR}, iyiiy o bo >=TT(pR] 4,00 50). wavelet transformation and the identity operator as a vacuum
38) vector. Therefore, the corresponding wavelet transformation
From theorems 1 and 2 is separable iff characteristictakes the following form:

function written as (8). Th& ® 2 Werner states is defined o
as W:Bw— Ly(G): p— pi,j) =

py = %((271’)]+(2f71) ST ligyil), 1< f <1, (39) < hilig) >=< p (i J)lo >=< p' (i, ), 1o >= Tr(ﬁfr(T(i,)j)).
47

0]



In the wavelet notation for the two partite permutation groujs]
for simplicity we reduce our considerations on the irreducibl[e
representationDy x Ds iS (g1, 92) = iy iy ® Ty 4y, With
Tiyi, = AR B2 i1,i5 = {0,1}, and the characteristic func-[20]
tion is defined as

[21]
B(in, 123 315 52) =< s liy insjs o) >=< Py Tirinsjr galo > 22]
(48) 23]

using test functional, via trace function the characteristic(24]

function is reduced to [25]

S S S R vy — st
¢(ir, 93 1, J2) =< pﬂil;iz‘-jl;]‘z’lo >= Tr(pﬂ.il,izl,jl,jz [26]

).

(49)

Let us consider the®?2 Werner states same as the permutatida’]

group (28]
1

[29

5(@=NI+RF=1) ) lij)il), -1 < f<1, (50)  [30]

" [31]
where] is the identity operator. The positive semidefiniteness
condition for the matris® ... g3 = ¢(g5 ‘95,9, 9s), where
these matrices are completely determined by their first roygs)
and the group multiplication table. Now by calculatidy
matrix for the above Werner state one can show @hatwill
be positive if0 < f <1 i.e., the Werner state is separable if

0<f<1.

Py

IV. CONCLUSIONS

The universal description of quantum entanglement using
group theory and non-commutative characteristic functions for
homogenous space and projective representation of group on
Banach spaces for some of well known examples, such as:
Moyal representation for a spin, Dihedral group and permuta-
tion group have been considered. Entanglement consideration
for others homogenous spaces and projective representation of
groups is under investigation.
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