Towards linear phononics, quantum information processing and nonlocality tests in ion traps

Alessio Serafini, Alex Retzker, Martin B. Plenio

Department of Physics and
Institute for Mathematical Sciences
Imperial College London
CV quantum information

Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- “Natural” setting for CV QI: quantum optics

M. Reck & P. G. Kwiat ’95
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- "Natural" setting for CV QI: quantum optics

- Reluctant to interact with the environment

M. Reck & P. G. Kwiat ’95
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- “Natural” setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- “Natural” setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
 - *Deterministic* (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
CV quantum information

- Quantum information with systems described by canonical operators, like \(\hat{x} \) and \(\hat{p} \), with continuous spectra

- “Natural” setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
 - Deterministic (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
 - Quantum optical bag of tricks and tools (linear optics)
CV quantum information

Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

“Natural” setting for CV QI: quantum optics

- Reluctant to interact with the environment
- Travel very fast (as fast as it gets in fact)
- Deterministic (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
- Quantum optical bag of tricks and tools (linear optics)

So, why do we bother investigating other systems!?
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- "Natural" setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
 - Deterministic (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
 - Quantum optical bag of tricks and tools (linear optics)

- So, why do we bother investigating other systems!?
 - Cavity losses for ‘static’ quantum information
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- “Natural” setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
 - *Deterministic* (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
 - Quantum optical bag of tricks and tools (*linear optics*)

- So, why do we bother investigating other systems!?
 - Cavity losses for ‘static’ quantum information
 - Entanglement generation is difficult
 - see Laurat *et al*., J. Opt. B 2005: $E_N \approx 1.6$
 - Takeno *et al*., Opt. Express 2007: $E_N \lesssim 3$ (theoretical *projection*)
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- “Natural” setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
 - Deterministic (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
 - Quantum optical bag of tricks and tools (linear optics)

- So, why do we bother investigating other systems!?
 - Cavity losses for ‘static’ quantum information
 - Entanglement generation is difficult
 - see Laurat et al., J. Opt. B 2005: $E_N \simeq 1.6$
 - Takeno et al., Opt. Express 2007: $E_N \lesssim 3$ (theoretical projection)
CV quantum information

- Quantum information with systems described by canonical operators, like \(\hat{x} \) and \(\hat{p} \), with continuous spectra

- “Natural” setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
 - Deterministic (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
 - Quantum optical bag of tricks and tools (linear optics)

- So, why do we bother investigating other systems!?
 - Cavity losses for ‘static’ quantum information
 - Entanglement generation is difficult
 - see Laurat et al., J. Opt. B 2005: \(E_N \sim 1.6 \)
 - Takeno et al., Opt. Express 2007: \(E_N \sim 3 \) (theoretical estimate)
CV quantum information

- Quantum information with systems described by canonical operators, like \hat{x} and \hat{p}, with continuous spectra

- “Natural” setting for CV QI: quantum optics
 - Reluctant to interact with the environment
 - Travel very fast (as fast as it gets in fact)
 - Deterministic (although ‘imperfect’) implementations of teleportation, dense coding, key distribution, . . .
 - Quantum optical bag of tricks and tools (linear optics)

- So, why do we bother investigating other systems!?
 - Cavity losses for ‘static’ quantum information
 - Entanglement generation is difficult
 - see Laurat et al., J. Opt. B 2005: $E_N \simeq 1.6$
 - Takeno et al., Opt. Express 2007: $E_N \simeq 3$ (theoretical estimate)
‘Massive’ CV degrees of freedom

Controllable continuous variable degrees of freedom are ubiquitous
‘Massive’ CV degrees of freedom

Controllable continuous variable degrees of freedom are ubiquitous.
Our pick are the “transverse” (or “radial”) degrees of freedom of trapped ions (Zhu, Monroe, Duan, PRL ’06; C. F. Roos et al., arXiv:0705.0788).

* courtesy of R. Blatt
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

displaced (classical currents)
squeezed (χ^2 crystals)
rotated (phase plates, beam splitters)
"Linear optical" operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be **efficiently**:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be \textit{efficiently}:

- displaced \textit{(classical currents)}

- squeezed \textit{(\(\chi^2\) crystals)}

- rotated \textit{(phase plates, beam splitters)}
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be
**efficiently:**

- displaced
 - (classical currents)
- squeezed
 - (χ^2 crystals)
- rotated
 - (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed \((\chi^2\) crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
"Linear optical" operations:

CV states can be **efficiently**:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
"Linear optical" operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be *efficiently*:

- displaced
 (classical currents)

- squeezed
 (χ^2 crystals)

- rotated
 (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be
 efficiently:

- displaced
 (classical currents)

- squeezed
 (χ^2 crystals)

- rotated
 (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

displaced (classical currents)
squeezed (χ^2 crystals)
rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be *efficiently*:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be

efficiently:

- displaced
 (classical currents)

- squeezed
 (χ^2 crystals)

- rotated
 (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced
 (classical currents)

- squeezed
 (χ^2 crystals)

- rotated
 (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be

efficiently:

- displaced
 (classical currents)

- squeezed
 (χ^2 crystals)

- rotated
 (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

displaced
(classical currents)

squeezed
(χ^2 crystals)

rotated
(phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:
- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
“Linear optical” operations:

CV states can be *efficiently*:

- displaced
 (classical currents)

- squeezed
 (χ^2 crystals)

- rotated
 (phase plates, beam splitters)
“Linear optical” operations:

CV states can be

efficiently:

- displaced
 (classical currents)

- squeezed
 (χ^2 crystals)

- rotated
 (phase plates, beam splitters)
“Linear optical” operations:

CV states can be efficiently:

- displaced (classical currents)
- squeezed (χ^2 crystals)
- rotated (phase plates, beam splitters)
How does one implement “linear optical” operations on trapped ions?
Linear phononics: the lonely ion

How does one implement “linear optical” operations on trapped ions?

The idea: control the trapping frequency
How does one implement “linear optical” operations on trapped ions?

The idea: control the trapping frequency

One ion:

\[H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 x^2 \]

\[X \equiv \sqrt{m\omega_0}x \quad P \equiv \frac{p}{\sqrt{m\omega_0}} \Rightarrow H_0 = \frac{1}{2}\omega_0(P^2 + X^2) \]
Linear phononics: the lonely ion

How does one implement “linear optical” operations on trapped ions?

The idea: control the trapping frequency

One ion:

\[H_0 = \frac{p^2}{2m} + \frac{1}{2} m \omega_0^2 x^2 \]

\[X \equiv \sqrt{m \omega_0} x \quad P \equiv p/\sqrt{m \omega_0} \quad \Rightarrow \quad H_0 = \frac{1}{2} \omega_0 (P^2 + X^2) \]
Linear phononics: the lonely ion

How does one implement “linear optical” operations on trapped ions?

The idea: control the trapping frequency

One ion:

\[H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2x^2 \]

\[X \equiv \sqrt{m\omega_0}x \quad P \equiv p/\sqrt{m\omega_0} \Rightarrow H_0 = \frac{1}{2}\omega_0(P^2 + X^2) \]

\[\omega_0 \rightarrow \omega_1 \Rightarrow H_0 \rightarrow \frac{1}{2}\omega_0\left(P^2 + \frac{\omega_1^2}{\omega_0^2}X^2\right) \]
Linear phononics: the lonely ion

How does one implement “linear optical” operations on trapped ions?

The idea: control the trapping frequency

One ion:

\[H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 x^2 \]

\[X \equiv \sqrt{m\omega_0} x \quad P \equiv p/\sqrt{m\omega_0} \Rightarrow H_0 = \frac{1}{2}\omega_0 (P^2 + X^2) \]

\[\omega_0 \rightarrow \omega_1 \Rightarrow H_0 \rightarrow \frac{1}{2}\omega_0 (P^2 + \frac{\omega_1^2}{\omega_0^2} X^2) \]
Linear phononics: the lonely ion

How does one implement “linear optical” operations on trapped ions?

The idea: control the trapping frequency

One ion:

\[H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 x^2 \]

\[X \equiv \sqrt{m\omega_0} x \quad P \equiv p/\sqrt{m\omega_0} \Rightarrow H_0 = \frac{1}{2} \omega_0 (P^2 + X^2) \]

\[\omega_0 \rightarrow \omega_1 \Rightarrow H_0 \rightarrow \frac{1}{2} \omega_0 \left(P^2 + \frac{\omega_1^2}{\omega_0^2} X^2 \right) \]

Any linear optical operation on a single particle can be implemented by controlling \(\omega \)
Linear phononics: the more the merrier

Any ‘linear optical’ operation can be implemented if individual control of the radial trapping frequencies is achieved (Serafozzi, Retzker, Plenio, arXiv:0708.0851)
Any ‘linear optical’ operation can be implemented if individual control of the radial trapping frequencies is achieved (Serafozzi, Retzker, Plenio, arXiv:0708.0851)

Non-resonant atoms: Coulomb interaction is suppressed
Linear phononics: the more the merrier

- **Any** ‘linear optical’ operation can be implemented if *individual* control of the radial trapping frequencies is achieved (Serafozzi, Retzker, Plenio, arXiv:0708.0851)
- At resonance: Coulomb interaction is on

![Diagram](image-url)
Linear phononics: the more the merrier

- Any ‘linear optical’ operation can be implemented if \(\text{individual} \) control of the radial trapping frequencies is achieved (Serafozzi, Retzker, Plenio, arXiv:0708.0851)

- At resonance: Coulomb interaction is on

- All the results about Gaussian states can be carried over to ion traps (harmonic approximation)
Linear phononics: the more the merrier

- Any ‘linear optical’ operation can be implemented if individual control of the radial trapping frequencies is achieved (Serafozzi, Retzker, Plenio, arXiv:0708.0851)

- At resonance: Coulomb interaction is on

- All the results about Gaussian states can be carried over to ion traps (harmonic approximation)

- Possibility to go beyond Gaussian when anharmonicities kick in
Entanglement generation

Achieving local control of the frequencies could be challenging experimentally.
Entanglement generation

- Achieving local control of the frequencies could be challenging experimentally.
- From now on, only *global* control is assumed: all the trapping frequencies are the same at all times (but can be changed all together).
Entanglement generation

Three ions: starting from the ground state for trapping frequency $\omega_i = 100 \text{ MHz}$ and evolving with frequency $\omega_f = 2 \text{ MHz}$, $T \simeq 21^\circ C$. (LogNeg between ion 1 and 3)
Entanglement generation

- **Two ions**: starting from the ground state for trapping frequency $\omega_i = 100 \text{ MHz}$ and evolving with frequency $\omega_f = 2 \text{ MHz}$, $T \simeq 21^\circ C$.

![Graph showing time evolution of logarithmic negativity with different gamma values](image-url)
Entanglement generation

- **Two ions**: starting from the ground state for trapping frequency $\omega_i = 100 \text{ MHz}$ and evolving with frequency $\omega_f = 2 \text{ MHz}$, $T \simeq 21^\circ \text{C}$.

- If swapped to light: entanglement generator for quantum optics
Nonlocality test

- Measurements can also be implemented: parity measurable in single runs
Nonlocality test

- Measurements can also be implemented: parity measurable in single runs
 \[\Rightarrow \text{the violation of Bell inequalities can be tested with Gaussian states} \]
Nonlocality test

- Measurements can also be implemented: parity measurable in single runs

⇒ the violation of Bell inequalities can be tested with Gaussian states

- Violation of ‘Bell-Klyshko’ inequality by displaced parity (Banaszek and Wodkiewicz, PRA ’98), for 3 ions:
Nonlocality test

- Measurements can also be implemented: parity measurable in single runs
- \(\Rightarrow \) the violation of Bell inequalities can be tested with Gaussian states
- Violation of ‘Bell-Klyshko’ inequality by displaced parity (Banaszek and Wodkiewicz, PRA ’98), for 3 ions:

\[
\begin{array}{ccccccc}
& -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
B_3 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & & & & & & & & \\
x_1(\text{nm}) & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & -3 & -2 & -1 & 0 & \\
x_2(\text{nm})
\end{array}
\]

effect of thermal noise:
\[T \simeq 21^\circ C, \gamma N \simeq 200\text{Hz} \]
Summing up:

Transverse CV degrees of freedoms of trapped ions allow for:
Summing up:

- Transverse CV degrees of freedoms of trapped ions allow for:
 - remarkable entanglement generation capability
Summing up:

- Transverse CV degrees of freedoms of trapped ions allow for:
 - **remarkable** entanglement generation capability
 - **reliable performances** under currently achievable heating rates
Summing up:

- Transverse CV degrees of freedoms of trapped ions allow for:
 - remarkable entanglement generation capability
 - reliable performances under currently achievable heating rates
 - measurements of phonon numbers and parity (suitable to test Bell inequalities’ violation)
Summing up:

- Transverse CV degrees of freedoms of trapped ions allow for:
 - remarkable entanglement generation capability
 - reliable performances under currently achievable heating rates
 - measurements of phonon numbers and parity (suitable to test Bell inequalities’ violation)
 - anharmonic Hamiltonians
Summing up:

- Transverse CV degrees of freedoms of trapped ions allow for:
 - remarkable entanglement generation capability
 - reliable performances under currently achievable heating rates
 - measurements of phonon numbers and parity (suitable to test Bell inequalities’ violation)
 - anharmonic Hamiltonians

⇒ Promising both for quantum information processing and as probes of fundamental physics