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Overview

• Two models for Quantum Computing:  

• Structural Relations 

➡ Quantum Circuits

➡ Measurement-based quantum computing (MBQC) 

➡ Causal Structure

➡ Parallelism 
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Figure 2: The only possible conflicting scenarios in gflow structures, i.e. vertices with the same
correcting set.
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Figure 3: Circuit A is obtained from translation of the pattern in Figure 1(A), and the imaginary
Circuit B from translation of the pattern in Figure 1(B).

also a flow which then one will have no vicious cycles or the obtained collection of Input-Output
paths together with the gflow partial order induced a flow having some vicious cycles.

4 Model Translations

It is known that given a pattern where the underlying geometry has flow one can directly decompose,
star decomposition, the pattern to a circuit with no auxiliary qubits that implements the same
unitary [6]. Another method of translating is based on the well-known method of coherently
implementing a measurement, this way one will keep all the auxiliary qubits to obtain a circuit
with the same depth of the original pattern [5].

Proposition 4.1. Both methods of star decompositions and coherent implementation define a bi-
jection between patterns with flow and quantum circuits.

For example, consider the pattern given in Figure 1(A) that can be decomposed to the circuit
given in Figure 3(A), the main building block is the replacement of the atomic pattern Xsi

j Mα
i Eij

with the J(α) gate, J(α) = HP (α). Then any remaining Eij command will be replaced by a
corresponding ∧Zij gate. Finally, composing all the translated gates, according to the partial order
of the flow structure, leads to a well defined circuit.

In order to demonstrate the difference between gflow and flow consider the geometry in Figure
1(B) which has a gflow but no flow. Now if we follow the same construction of translating atomic
patterns, we obtain an imaginary circuit given in Figure 3(B).
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Maps over C2

We write X and Z for the Pauli spin matrices:

X :=

(
0 1
1 0

)

Z :=

(
1 0
0 −1

)

and H and P (α) for the Hadamard and phase operator:

H := 1√
2

(
1 1
1 −1

)

P (α) :=

(
1 0
0 eiα

)

All these maps are unitaries, and all self-adjoint except
P (α)" = P (−α).
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[36] D. Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California Institute
of Technology, 1997.

[37] H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.

A Introduction to quantum computing

Let H denote a 2-dimensional complex vector space, equipped with the standard inner product. We
pick an orthonormal basis for this space, label the two basis vectors |0〉 and |1〉, and for simplicity

identify them with the vectors

(

1
0

)

and

(

0
1

)

, respectively. A qubit is a unit length vector in

this space, and so can be expressed as a linear combination of the basis states:

α0|0〉 + α1|1〉 =

(

α0

α1

)

.

Here α0,α1 are complex amplitudes, and |α0|2 + |α1|2 = 1.
An m-qubit state is a unit vector in the m-fold tensor space H⊗ · · ·⊗H. The 2m basis states of

this space are the m-fold tensor products of the states |0〉 and |1〉. We abbreviate |1〉⊗ |0〉 to |1〉|0〉
or |10〉. With these basis states, an m-qubit state |φ〉 is a 2m-dimensional complex unit vector

|φ〉 =
∑

i∈{0,1}m

αi|i〉.

There exists quantum states that cannot be written as the tensor product of other quantum states,
e.g. |00〉 + |11〉. This means that given a general element of H⊗H′ one cannot produce elements
of H and H′; such states are called entangled states.

We use 〈φ| = |φ〉∗ to denote the conjugate transpose of the vector |φ〉, and (φ , ψ) = 〈φ| · |ψ〉
for the inner product between states |φ〉 and |ψ〉. These two states are orthogonal if (φ , ψ) = 0.
The norm of |φ〉 is ‖φ‖ =

√

|(φ , φ)|.
A quantum state can evolve by a unitary operation or by a measurement. A unitary transfor-

mation is a linear mapping that preserves the norm of the states. If we apply a unitary U to a
state |φ〉, it evolves to U |φ〉.

The Pauli operators are a well-known set of unitary transformations for quantum computing:

X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

,

and the Pauli group on n qubits is generated by Pauli operators. Other well-known unitary trans-
formations are the identity I, the Hadamard gate H, the phase gate Z(α), of which Z(π/4) and
Z(π/2) are a special cases, and the Controlled-Z gate ∧Z:

I =

(

1 0
0 1

)

, H =
1√
2

(

1 1
1 −1

)

,

Z(α) =

(

1 0
0 eiα

)

, ∧Z =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









.
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Quantum Circuit

A directed acyclic graph where degree 1 nodes are either input or output and other nodes 
are unitary gate. An arbitrary subset of the inputs (outputs) are labelled auxiliary (result).
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Quantum Circuit with Measurements

Theorem. [Aharonov, Kitaev, Nisan] Qcircuit with measurement gates is computationally 
equivalent to Qcircuit with measurements performed only at the end. 



Measurement-based QC

• Teleportation Protocol (Bennett, Brassard, Crépeau, Jozsa, Peres and Wootters)

• Gate Teleportation (Gottesman and Chuang)

• One-way quantum computer (Raussendorf and Briegel)

Measurements play a central role. However, measuring induces      
non-deterministic evolutions. This probabilistic drift can be controlled.



Quantum Pacman

Elements of MBQC

• Initial entangled state (graph state)

• Angles of measurements

• Classical Control



Quantum Pacman

Quantum Pacman
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A formal language

•         prepares qubit in 

•          projects qubit onto basis states                                                                                         
(measurement outcome is                  )

•          creates entanglement  

•  Local Pauli corrections

• Feed forward: measurements and corrections commands are allowed to depend on 
previous measurements outcomes.

Commands

• Ni prepares qubit i in |+〉

• Mα
i projects qubit i onto basis states 1√

2
(|0〉± eiα|1〉)

— measurement outcome is si = 0,1

• Eij is controlled-Z applied at qubits i and j

• Local Pauli corrections: Xi, Zi

Feed forward. measurements and corrections commands are
allowed to depend on previous measurements outcomes.
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Feed forward. measurements and corrections commands are
allowed to depend on previous measurements outcomes.
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Dependent commands

The M and C commands may be parameterised by a signal, that is
an expression of the form

∑
i si (sum is evaluated in Z2).

• Cs
i with X0 = Z0 = I, X1 = X, Z1 = Z

• [Mα
i ]s = M(−1)sα

i X-action

• s[Mα
i ] = Mα+sπ

i Z-action
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V. Danos, EK, P. Panangaden, Journal of ACM, 2007



Example: Implementing H

Lets us back to the pattern H := ({1,2}, {1}, {2}, Xs1
2 Mx

1E12N2).

Starting with input q = (a|0〉+ b|1〉)|+〉, one has two computation
branches, branching at M0

1 :

(a|0〉+ b|1〉)|+〉 E12−→ 1√
2
(a|00〉+ a|01〉+ b|10〉 − b|11〉)

M0
1−→






1
2((a + b)|0〉+ (a− b)|1〉) s1 = 0

1
2((a− b)|0〉+ (a + b)|1〉) s1 = 1

X
s1
2−→ 1

2((a + b)|0〉+ (a− b)|1〉)

and since ‖a + b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2), both transitions
happen with equal probabilities 1

2.
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Example

Patterns of computation

The basic computation unit consists of finite lists:

(V, I, O, An . . . A1)

* Inputs and outputs may overlap, and this leads to optimisation,
in the sense of using fewer qubits.

Example: pattern H := ({1,2}, {1}, {2}, Xs1
2 M0

1E12N0
2) implements

Hadamard H.

Example: Implementing H

Lets us back to the pattern H := ({1,2}, {1}, {2}, Xs1
2 Mx

1E12N2).

Starting with input q = (a|0〉+ b|1〉)|+〉, one has two computation
branches, branching at M0

1 :

(a|0〉+ b|1〉)|+〉, ∅ E12−→ 1√
2
(a|00〉+ a|01〉+ b|10〉 − b|11〉), ∅

M0
1−→






1
2((a + b)|0〉+ (a− b)|1〉), ∅[0/0]

1
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starting with the input state                                we have



Patterns of Computation
Patterns of computation

The basic computation unit consists of finite lists:

(V, I, O, An . . . A1)

* Inputs and outputs may overlap, and this leads to optimisation,
in the sense of using fewer qubits.

Example: pattern H := ({1,2}, {1}, {2}, Xs1
2 M0

1E12N0
2) implements

Hadamard H.

Patterns are composed sequentially or parallel 

The model is universal and closed under composition



A universal set for unitaries on C2

J(α) := 1√
2

(
1 eiα

1 −eiα

)

Some nice equations:

J(α)J(0)J(β) = J(α + β)
J(α)J(π)J(β) = eiαZ J(β − α)
XJ(α) = J(α + π) = J(α)Z
H = J(0)
P (α) = J(0)J(α)

A universal set for unitaries on C2

J(α) := 1√
2

(
1 eiα

1 −eiα

)

∧Z :=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





Some nice equations:

Generating Patterns

The trivial implementations of our unitary generators:

∧Z := E12

Note that:
— These patterns are indeed among the simplest possible
— There is only one single dependency overall. P H

Generating Patterns

The trivial implementations of our unitary generators:

J(α) := Xs1
2 M−α

1 E12

Note that:
— These patterns are indeed among the simplest possible
— There is only one single dependency overall.

Generating Patterns

V. Danos, EK, P. Panangaden, Phys Rev. A. , 2006



MBQC vs Qcircuit

• Physical implementation, Fault Tolerance

• Equivalent in Computational Complexity

• Logarithmic separation in Depth Complexity

• Translation forward and backward

➡ Automated Scheme for Parallelising
➡ Information Flow
➡ Verification



Causal Flow - Feed forward mechanism

                                                                                                        

Danos and Kashefi, Phys. Rev. A, 2006,                                                                                                                                       
Browne, Kashefi, Mhala and Perdrix, New. Journal of Physics 2007 

➡Determinism
➡Translation to Circuits
➡Direct Pattern Synthesis
➡Depth Complexity



Determinism

A pattern is deterministic if all the branches are the same.

A necessary and sufficient condition for determinism 
based on geometry of entanglement is given by flow



M X

Correcting Measurements

Generating Patterns

The trivial implementations of our unitary generators:

J(α) := Xs1
2 M−α

1 E12

Note that:
— These patterns are indeed among the simplest possible
— There is only one single dependency overall.



Flow

Definition. An entanglement graph                has flow if there exists a map  
                    and  a partial order       over qubits

QC in a nutshell

A flow (f,!) for a geometry (G, I, O) consists of a map f : Oc → Ic

and a partial order ! over V such that for all x ∈ Oc:

— (i) x ∼ f(x)
— (ii) x ! f(x)
— (iii) for all y ∼ f(x) , we have x ! y
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1

2

3

4



Flow

Theorem. A pattern with flow is uniformly and strongly deterministic. 

Patterns with flow                             Unitary embedding 
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However, one can still obtain a deterministic pattern for the

open graph state in Figure 2 by fixing the angle of the mea-

surement of node b to be π/2. To see why, recall that Condi-
tion (F1) forbids f(i) = i, yet, in the special case where qubit
i is measured with angle π

2 (Pauli Y measurement), choosing

f(i) to be i will work, since:

M
π
2

i Xs
i = M

π
2

i Zs
i

Hence to correct the Y measurement at qubit i one can ap-
ply the dependent stabilizer, (Zi(

∏
j∈G(i) Zj))si , at the same

qubit i instead of a neighboring qubit, Figure 3. However the
obtained pattern is deterministic only if qubit b is measured
with angle π

2 , and is therefore not uniformly deterministic.

FIG. 3: An open graph state where the node with a loop, b must be
measured with a Pauli Y measurement. The matching partial order

has two levels given by the doted partitions.

Note that in the above example we fixed f(b) = b but con-
dition F (3) still need to be verified. And this is indeed the
case since in the given partial order the qubit c which is neigh-
bour of qubit b is in the next level. To make this point clear
consider the open graph state in Figure 4.

FIG. 4: An open graph sate where node b will be measured with Y
measurement however one cannot apply the special case described

above.

The only choice for f(a) is b and hence a < b but then
letting f(b) = b will violate the F (3) condition. Therefore
the only solution is to consider Y measurement as an arbitrary

measurement then we obtain a flow, Figure 5.

Another special case is when qubit f(i) is measured with
angle 0 (Pauli X measurement). Again the requirement that

f(i) > i can be dropped because:

M0
i Xs

i = M0
i

Therefore in the flow construction where the neighboring

qubit f(i) receives Xsi

f(i), if it is measured with angle 0 this
correction can be ignored.

FIG. 5: An open graph sate where node b will be measured with Y
with a corresponding flow without any loop.

The special cases of Pauli measurements can be related to

the fact that Pauli measurements transform one graph state to

another one [14]. Hence one can observe that for open graph

states without flow, there might exists a set of Pauli measure-

ments that transform it to one with flow.

B. Circuit Decomposition

Flow also provides a decomposition into simple building

blocks, called star patterns, from which one can derive a cor-

responding circuit implementation of the pattern. Define the

star patternS(n, α) as:

Xs1

2 Mα
1 E12E13 · · ·E1n

where 1 is the only input and 2, · · · , n are the outputs, for
n ≥ 2. The underlying graph has a simple flow function with
f(1) = 2 and a two level partial order (see Figure 6). It is easy
to verify that the Star pattern implements the unitary given by

the circuit in Figure 7.

FIG. 6: Star pattern S(n, α) with one input, the boxed circle, and n
outputs, white circles. The input qubit will be measured with angle

α and one of the outputs receives a dependent correction Xs1 . The

flow is given by the single arrow from the input to one of the outputs

and two level partial order.

Every pattern such that the underlying open graph state has

flow can be decomposed into star patterns. The construction

5

FIG. 7: The circuit implementation of Star pattern in Figure 6 , with

controlled-Z, phase P (−α) and Hadamard H gates.

starts by picking a qubit in the first level of the partial order,

exhausts all qubits in the first level before going to the next

level. Each time a qubit i is picked the associated star pattern
Si is taken to have i as input, and all its remaining current
neighbours as outputs. Then we remove this qubit from the

graph and carry on the construction till we reach to the final

level of partial order. The final deterministic pattern is the

sequential and tensor composition of the obtained star patterns

with the final ∧Z between the output qubits:

P =
∏

m,n∈O Emn
∏>

i∈Oc Si

Now each Start pattern can be replaced by its corresponding

circuit to give a circuit decomposition for the pattern P. In
the obtained circuit each wire represents either an input qubit

or an auxillary one prepared in |+〉 state, where the case is
determined during the above construction. This construction

can be easily formalized.

IV. ALGEBRAIC STRUCTURE

As yet, Theorem 1 is only valid when preparations are all

of the form N0
i since Equation (5) in the proof is valid only

for such preparations. Define Xα
i = Zα

i XiZ
−α
i , with Zα

i
the phase operator with angle α applied at i. One has Zi =
Zπ

i . To handle general phase preparations, one only needs the

analog of equations (2), (3) and (5):

Zs
i Eij = (Xα

i )sEij(Xα
i )s

(Xα
i )sEij = EijZs

j (Xα
i )s

(Xα
j )sNα

i = Nα
i

and now Theorem 1 works as before. Note that we had to

extend the set of corrections to include Xα
i . This extension

will prove natural below, when we deal with adjunction.

Say an open graph state (G, I, O) has bi-flow, if both
(G, I, O) and its dual state (G, O, I) have flow. Say a pat-
tern has flow (bi-flow) if its underlying open graph state does.

The class of patterns with flows (bi-flows) is closed under

composition and tensorization. It is also universal, in the sense

that all unitaries can be realised within this class. This follows

from the existence of a set of generating patterns having bi-

flow [21].

Figure 8 shows the open graph state corresponding to a pat-

tern realizing ∧U (controlled-U ), for U an arbitrary 1-qubit

unitary [21].

FIG. 8: An open graph state with bi-flow.

Patterns with bi-flows realize unitary operators. Indeed, by

(F2), a flow (f, >) is one-to-one. Therefore the orbits fn(i)
for i ∈ I define an injection from I intoO. In the case of a bi-
flow, I and O are therefore in bijection, and since one knows

already that patterns with flows realize unitary embeddings, it

follows that patterns with bi-flow implement unitaries.

Interestingly, one can define directly the adjoint of a pat-

tern in the subcategory of patterns with bi-flows. Specifically,

given (f, >) a flow for (G, I, O), and angles {αi; i ∈ Ic} for
preparations, and {βj; j ∈ Oc} for measurements, we write
Pf,G,#α,#β for the pattern obtained as in the extension to gen-

eral preparations of Theorem 1. Suppose a reverse flow (g, >)
is given on (G, O, I), one can define:

P†
f,G,#α,#β

:= Pg,G,#β,#α

There are two things to note here: first, for this definition to

make sense, one needs to have general preparations as we

described above; second, this adjunction operation depends

on the choice of a reverse flow (g, >). It is easy to see that
P†

f,G,α,β andPf,G,β,α realize adjoint unitaries.

An example is the pattern H := Xs1

2 M0
1 E12N0

2 with I =
{1} and O = {2}. It has a unique bi-flow, and is self-adjoint
in the sense that H† = H, therefore it must realize a self-
adjoint operator, and indeed it realizes the Hadamard trans-

formation.

V. CONCLUSION

Whereas the one-way model had been mostly thought of

in relation with the traditional circuit model, we have pro-

posed here a flow condition, which is clearly divorced from

the circuit model, and guarantees the existence of a set of

Pauli corrections obtaining a (strongly and uniformly) deter-

ministic behavior. In essence, while dealingwith patterns with

flow, one can wholly forget about corrections, and think of

measurements as being simply projections. This in turn may

help in revealing the new perspective on quantum comput-

ing which is implicit in measurement based models. Follow-

ing this work, a polynomiual time algorithm for finding flow

was proposed in [22] which then extended to an algorithmic

method for circuit design for unitaries thoroughly based on

the one-way model [16]. Furthermore one can see that given

an open graph state as a resource for computation, flow con-

dition characterizes the set of all unitaries implementable on

that given state.

From Pattern to Circuit

4

However, one can still obtain a deterministic pattern for the

open graph state in Figure 2 by fixing the angle of the mea-

surement of node b to be π/2. To see why, recall that Condi-
tion (F1) forbids f(i) = i, yet, in the special case where qubit
i is measured with angle π

2 (Pauli Y measurement), choosing

f(i) to be i will work, since:

M
π
2

i Xs
i = M

π
2

i Zs
i

Hence to correct the Y measurement at qubit i one can ap-
ply the dependent stabilizer, (Zi(

∏
j∈G(i) Zj))si , at the same

qubit i instead of a neighboring qubit, Figure 3. However the
obtained pattern is deterministic only if qubit b is measured
with angle π

2 , and is therefore not uniformly deterministic.

FIG. 3: An open graph state where the node with a loop, b must be
measured with a Pauli Y measurement. The matching partial order

has two levels given by the doted partitions.

Note that in the above example we fixed f(b) = b but con-
dition F (3) still need to be verified. And this is indeed the
case since in the given partial order the qubit c which is neigh-
bour of qubit b is in the next level. To make this point clear
consider the open graph state in Figure 4.

FIG. 4: An open graph sate where node b will be measured with Y
measurement however one cannot apply the special case described

above.

The only choice for f(a) is b and hence a < b but then
letting f(b) = b will violate the F (3) condition. Therefore
the only solution is to consider Y measurement as an arbitrary

measurement then we obtain a flow, Figure 5.

Another special case is when qubit f(i) is measured with
angle 0 (Pauli X measurement). Again the requirement that

f(i) > i can be dropped because:

M0
i Xs

i = M0
i

Therefore in the flow construction where the neighboring

qubit f(i) receives Xsi

f(i), if it is measured with angle 0 this
correction can be ignored.

FIG. 5: An open graph sate where node b will be measured with Y
with a corresponding flow without any loop.

The special cases of Pauli measurements can be related to

the fact that Pauli measurements transform one graph state to

another one [14]. Hence one can observe that for open graph

states without flow, there might exists a set of Pauli measure-

ments that transform it to one with flow.

B. Circuit Decomposition

Flow also provides a decomposition into simple building

blocks, called star patterns, from which one can derive a cor-

responding circuit implementation of the pattern. Define the

star patternS(n, α) as:

Xs1

2 Mα
1 E12E13 · · ·E1n

where 1 is the only input and 2, · · · , n are the outputs, for
n ≥ 2. The underlying graph has a simple flow function with
f(1) = 2 and a two level partial order (see Figure 6). It is easy
to verify that the Star pattern implements the unitary given by

the circuit in Figure 7.

FIG. 6: Star pattern S(n, α) with one input, the boxed circle, and n
outputs, white circles. The input qubit will be measured with angle

α and one of the outputs receives a dependent correction Xs1 . The

flow is given by the single arrow from the input to one of the outputs

and two level partial order.

Every pattern such that the underlying open graph state has

flow can be decomposed into star patterns. The construction

Star Pattern:



Star Decomposition

Theorem. Every pattern such that the underlying graph state has 
flow can be decomposed into star patterns.

Patterns with flow                          Quantum Circuit 
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Figure 2: The only possible conflicting scenarios in gflow structures, i.e. vertices with the same
correcting set.
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Figure 3: Circuit A is obtained from translation of the pattern in Figure 1(A), and the imaginary
Circuit B from translation of the pattern in Figure 1(B).

also a flow which then one will have no vicious cycles or the obtained collection of Input-Output
paths together with the gflow partial order induced a flow having some vicious cycles.

4 Model Translations

It is known that given a pattern where the underlying geometry has flow one can directly decompose,
star decomposition, the pattern to a circuit with no auxiliary qubits that implements the same
unitary [6]. Another method of translating is based on the well-known method of coherently
implementing a measurement, this way one will keep all the auxiliary qubits to obtain a circuit
with the same depth of the original pattern [5].

Proposition 4.1. Both methods of star decompositions and coherent implementation define a bi-
jection between patterns with flow and quantum circuits.

For example, consider the pattern given in Figure 1(A) that can be decomposed to the circuit
given in Figure 3(A), the main building block is the replacement of the atomic pattern Xsi

j Mα
i Eij

with the J(α) gate, J(α) = HP (α). Then any remaining Eij command will be replaced by a
corresponding ∧Zij gate. Finally, composing all the translated gates, according to the partial order
of the flow structure, leads to a well defined circuit.

In order to demonstrate the difference between gflow and flow consider the geometry in Figure
1(B) which has a gflow but no flow. Now if we follow the same construction of translating atomic
patterns, we obtain an imaginary circuit given in Figure 3(B).
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Star Decomposition



Generalised Flow

Correcting with a set of qubits instead of one qubit.
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Generalised Flow

Correcting with a set of qubits instead of one qubit.
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Figure 2. A graph with generalised flow but no flow: g(a) = d, g(b) = e, g(c) = {d, f}. The
blue arrows represent the flow edges, where as black arrow indicates a virtual flow edge, (an

edge that is not an edge of the graph state).

that for all i ∈ Oc,

—(P1) if j ∈ p(i), i "= j, and λ(j) /∈ {X, Y } then i < j,

—(P2) if j ≤ i, i "= j, and λ(j) /∈ {Y, Z} then j /∈ Odd(p(i)),

—(P3) if j ≤ i, j ∈ p(i) and λ(j) = Y then j ∈ Odd(p(i)),

—(P4) if λ(i) = (X, Y ) then i /∈ p(i) and i ∈ Odd(p(i)),
—(P5) if λ(i) = (X, Z) then i ∈ p(i) and i ∈ Odd(p(i)),

—(P6) if λ(i) = (Y, Z) then i ∈ p(i) and i /∈ Odd(p(i)),

—(P7) if λ(i) = X then i ∈ Odd(p(i)),

—(P8) if λ(i) = Z then i ∈ p(i),

—(P9) if λ(i) = Y then either: i /∈ p(i) & i ∈ Odd(p(i)) or i ∈ p(i) & i /∈ Odd(p(i)).

Theorem 4 Suppose the open graph state (G, I, O, λ) has Pauli flow (g, >), then the pattern:

Pg,G :=
∏>

i∈Oc

(

Xsi

g(i)∩{j , j>i}Z
si

Odd(g(i))∩{j , j>i} Mλ(i),αi

i

)

EGNIc ,

where the product follows the dependency order >, is deterministic and realizes the unitary

embedding:

UG :=
(
∏

i∈Oc〈+λ(i),αi
|i
)

EGNIc .

Proof: The proof is similar to the proof of theorem 2. In (P1), if λ(j) ∈ {X, Y }, j

may be in the p(i) even if j ≤ i since MX
i Xi = MX

i and MY
i XiZi = MY

i . Notice that

if λ(j) = Y , j ≤ i and j ∈ p(i) then j must be in Odd(p(i)) – (P3) – because of the Zi

command inMY
i XiZi = MY

i . In (P2), if λ(j) = Z, then j may be in Odd(p(i)) even if j ≤ i,

sinceMZ
i Zi = MiZ . The condition λ(j) "= Y in (P2) is necessary because of (P3). Finally,

(P7), (P8), and (P9) are obtained from (P4), (P5), and (P6) since aX measurement is both

a (X, Y ) and a (X, Z) measurement, and so on.!

6. Examples

Trivially, any open graph state with a flow also has a generalised flow, but the following set

of examples show how the generalised flow can be beneficial. The open graph state in Figure

2 has no flow (due the cyclic connections), but it admits a generalized flow. This example

Connection to the past



Generalised Flow

Theorem. A pattern is uniformly, strongly and step-wise 
deterministic if and only if its graph has a generalised flow.

Definition. An entanglement graph                has generalised flow if there 
exists a map                            and  a partial order      over qubits

QC in a nutshell

A flow (f,!) for a geometry (G, I, O) consists of a map f : Oc → Ic

and a partial order ! over V such that for all x ∈ Oc:

— (i) x ∼ f(x)
— (ii) x ! f(x)
— (iii) for all y ∼ f(x) , we have x ! y

Latex Template

March 14, 2007

f : Oc → PIc

1

Latex Template

March 14, 2007

≤

1

Generalized Flow and Determinism 7

Figure 1. The pictorial presentation of the generalised flow conditions (G1-G5) for different
measurement planes. The straight lines (blue) stand for multiple edges in the entanglement
graph where the labels give the parity of the number of these connections and the doted straight
lines (red) for a single edge. The single qubit in Current layer denote the qubit to be measured,
its correcting set lays in Future layer (black closed curve). The neighbours of the correcting
set belonging to Past layer are denoted by doted closed cure.

Note that the above equation is slightly more general than the common graph stabiliser [?] as
it can be applied to open graph states where input qubits are prepared in arbitrary states. Let i

be a non-input qubits, prepared in |+〉 state, and G′ be the sub-graph obtained after removing
the vertex i, we have

KiEGNIc =
∏

j∈NG(i) ZjXi

∏
j∈NG(i) EijEG′ NIc

=
∏

j∈NG(i) Zj

∏
j∈NG(i) EijXi

∏
j∈NG(i) ZjEG′ NIc

=
∏

j∈NG(i) Zj

∏
j∈NG(i) Zj graphstatesEG XiNiNIc\i

= EGNIc

The proof of Theorem ?? is based on the following simple observation. We could make a
measurement M (X,Y ),α

i “deterministic” (corrected) if it could be pre-composed by an acausal
Zsi

i correction (i.e. conditioned on the outcome of a measurement which hasn’t happened yet).
This unphysical scenario is a useful starting point for our proof.

〈+(X,Y ),α|i = M (X,Y ),α
i Zsi

i .

The flow construction guarantees that such a deterministic pattern with acausal corrections
can be transformed into a runnable pattern, where all dependencies now do respect the proper
causal ordering. It is easy to verify that, the pattern Pf,G in Theorem ?? can be equivalently
written in terms of acausal measurements as:

Pf,G =
∏>

i∈Oc

(
M (X,Y ),αi

i Zsi
i Ksi

f(i)

)
EGNIc .

The key observation which allows us to transform this into a runnable pattern is that the flow
conditions mean that there exists a stabiliser Kf(i) which when composed with the acausal
correction, forms an operator which commutes with the measurement, and thus the pattern
can be brought into runnable order.

A natural way to extend this idea is to consider a set of vertices as a correcting set.
Hence instead of working with a function f : Oc → Ic defining the correcting vertices, we
will have a function g : Oc → PIc defining the correcting sets of vertices, where PIc denotes
the power set of all the subsets of vertices in Ic. It is important to note that the condition
on these correcting sets will depend on the plane which the measurement will be performed,
as measurement in different planes require a different acausal correction. We define the odd
neighborhood of a set of vertices K to be the set Odd(K) = {u , |NG(u) ∩K| = 1 mod 2}.

Generalized Flow and Determinism 8

— (i) i /∈ g(i) and i ∈ Odd(g(i)),
— (ii) if j ∈ g(i) and i "= j then i < j,
— (iii) if j ≤ i and i "= j then j /∈ Odd(g(i))

,One can consider the partial order < as a notion of time. Then, condition (G2) says that
all the vertices with an odd number of connection to the correcting set g(i) should belong to
the past of i. These conditions can be better understood pictorially, as illustrated in Figure 1.
Similar to the Theorem 1 we will apply dependent stabiliser corrections on all the qubits in the
correcting set. The evenness or oddness condition on the number of the connections between
a vertex and its correcting set and neighbors will guarantee that the acausal correction on qubit
i can be transformed to a correction with causal dependencies. In simple words a generalised
flow is also a collection of input-output paths (similar to flow) however some particular type
of loops are permitted, see Figure 2.

4. Determinism Theorem

A necessary and sufficient condition for determinism in the extended one-way model is given
in the following two theorems. It is important to note that this condition can be easily
extended to any other MQC models (e.g. teleportation-based models [19, 11]), since there
exist compositional embeddings from the one-way model to all other MQC models [6]. Recall
that g(i), where g is a generalised flow, is a subset of vertices.

Theorem 2 Suppose the open graph state (G, I, O,λ) has generalised flow (g,>), then the
pattern:

Pg,G :=
∏>

i∈Oc

(
Xsi

g(i)\{i}Z
si
Odd(g(i)) Mλ(i),αi

i

)
EGNIc ,

where the product follows the dependency order >, is runnable, uniformly, strongly and
stepwise deterministic, and realizes the unitary embedding:

UG :=
(∏

i∈Oc〈+λ(i),αi|i
)

EGNIc .

Theorem 3 Suppose the pattern P is uniformly, strongly and stepwise deterministic, then
the underlying geometry of P has generalized flow and the pattern realizes the unitary
embedding:

UG :=
(∏

i∈Oc〈+λ(i),αi|i
)

EGNIc .

The next lemma will be used in the proof of Theorem 3 and illustrates the role that the
strong condition of uniformity will play. Denote by P|ψ〉 a projection to state |ψ〉.

Lemma 4 If for all α in the (X, Z),(X, Y ) or (Y, Z) plane Pα|ψ〉 = eif(α)Pα|ψ′〉 then
|ψ〉 = eiθ|ψ′〉

Proof. We write the proof for the case of a projection in (X,Z) plane as other cases are
similar. It suffices to consider the angles of α = {0, π/2, π}, or in other words, measurements
of X and Z observables. First we write the states in the basis of the eigenvectors of Z:

|ψ〉 = a|0〉|ψ0〉 + a′|1〉|ψ1〉 , |ψ′〉 = b|0〉|ψ′
0〉 + b′|1〉|ψ′

1〉 .
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Figure 2: The only possible conflicting scenarios in gflow structures, i.e. vertices with the same
correcting set.
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Figure 3: Circuit A is obtained from translation of the pattern in Figure 1(A), and the imaginary
Circuit B from translation of the pattern in Figure 1(B).

also a flow which then one will have no vicious cycles or the obtained collection of Input-Output
paths together with the gflow partial order induced a flow having some vicious cycles.

4 Model Translations

It is known that given a pattern where the underlying geometry has flow one can directly decompose,
star decomposition, the pattern to a circuit with no auxiliary qubits that implements the same
unitary [6]. Another method of translating is based on the well-known method of coherently
implementing a measurement, this way one will keep all the auxiliary qubits to obtain a circuit
with the same depth of the original pattern [5].

Proposition 4.1. Both methods of star decompositions and coherent implementation define a bi-
jection between patterns with flow and quantum circuits.

For example, consider the pattern given in Figure 1(A) that can be decomposed to the circuit
given in Figure 3(A), the main building block is the replacement of the atomic pattern Xsi

j Mα
i Eij

with the J(α) gate, J(α) = HP (α). Then any remaining Eij command will be replaced by a
corresponding ∧Zij gate. Finally, composing all the translated gates, according to the partial order
of the flow structure, leads to a well defined circuit.

In order to demonstrate the difference between gflow and flow consider the geometry in Figure
1(B) which has a gflow but no flow. Now if we follow the same construction of translating atomic
patterns, we obtain an imaginary circuit given in Figure 3(B).

4

Star Decomposition
Generalized Flow and Determinism 11
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Figure 2. A graph with generalised flow but no flow: g(a) = d, g(b) = e, g(c) = {d, f}. The
blue arrows represent the flow edges, where as black arrow indicates a virtual flow edge, (an

edge that is not an edge of the graph state).

that for all i ∈ Oc,

—(P1) if j ∈ p(i), i "= j, and λ(j) /∈ {X, Y } then i < j,

—(P2) if j ≤ i, i "= j, and λ(j) /∈ {Y, Z} then j /∈ Odd(p(i)),

—(P3) if j ≤ i, j ∈ p(i) and λ(j) = Y then j ∈ Odd(p(i)),

—(P4) if λ(i) = (X, Y ) then i /∈ p(i) and i ∈ Odd(p(i)),
—(P5) if λ(i) = (X, Z) then i ∈ p(i) and i ∈ Odd(p(i)),

—(P6) if λ(i) = (Y, Z) then i ∈ p(i) and i /∈ Odd(p(i)),

—(P7) if λ(i) = X then i ∈ Odd(p(i)),

—(P8) if λ(i) = Z then i ∈ p(i),

—(P9) if λ(i) = Y then either: i /∈ p(i) & i ∈ Odd(p(i)) or i ∈ p(i) & i /∈ Odd(p(i)).

Theorem 4 Suppose the open graph state (G, I, O, λ) has Pauli flow (g, >), then the pattern:

Pg,G :=
∏>

i∈Oc

(

Xsi

g(i)∩{j , j>i}Z
si

Odd(g(i))∩{j , j>i} Mλ(i),αi

i

)

EGNIc ,

where the product follows the dependency order >, is deterministic and realizes the unitary

embedding:

UG :=
(
∏

i∈Oc〈+λ(i),αi
|i
)

EGNIc .

Proof: The proof is similar to the proof of theorem 2. In (P1), if λ(j) ∈ {X, Y }, j

may be in the p(i) even if j ≤ i since MX
i Xi = MX

i and MY
i XiZi = MY

i . Notice that

if λ(j) = Y , j ≤ i and j ∈ p(i) then j must be in Odd(p(i)) – (P3) – because of the Zi

command inMY
i XiZi = MY

i . In (P2), if λ(j) = Z, then j may be in Odd(p(i)) even if j ≤ i,

sinceMZ
i Zi = MiZ . The condition λ(j) "= Y in (P2) is necessary because of (P3). Finally,

(P7), (P8), and (P9) are obtained from (P4), (P5), and (P6) since aX measurement is both

a (X, Y ) and a (X, Z) measurement, and so on.!

6. Examples

Trivially, any open graph state with a flow also has a generalised flow, but the following set

of examples show how the generalised flow can be beneficial. The open graph state in Figure

2 has no flow (due the cyclic connections), but it admits a generalized flow. This example

Connection to the past



What’s the Problem ?

Patterns with gflow                               Cyclic Quantum Circuit 

Patterns with gflow                                    Unitary embedding 

Observation. There exists a subclass of cyclic circuits implementing unitary operator !



Syntactic Characterisation

Vicious Cycle. A closed path with no two consecutive non-flow edges.

Lemma. Any gflow leads to a flow with possible vicious cycles. 



Syntactic Characterisation

Theorem. A cyclic circuit obtained from a pattern with gflow has only 
following types of vicious cycles:

(i) Line loop                  (ii) Crossing loop

! ! ! !

Figure 4: A rewrite rule to eliminate loop defined by a ∧Z over the same wire where the ∧Z loop
translates to a ∧X, which can be seen as a “virtual” teleportation.

! !

Figure 5: A set of rewrite rules to commute acausal ∧Z gates until they are runnable.
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A Topological Rewriting Rule



Summary- MBQC vs Qcircuit

All Patterns

Deterministic Patterns

Patterns with Generalised Flow

Patterns with Flow

Cyclic Quantum Circuit 

Quantum Circuit



What next

• Deterministic patterns vs. quantum circuit

• Complexity analysis, exact trade off

• Physical implementation of the loop entangled state

• Connection with timelike loop, Deutsch, Bennett and Schumacher



Entanglement assisted state preparation and channel simulation

Charles Bennett, IBM, Watson (ITP Quantum Info Conference 12/7/01) 12

Interaction with one’s past self using an exotic 

physical time machine, such as a Wormhole

!!

time-reversed portion of trajectory

!!""

Grandfather type paradoxes give rise to constraints on 

allowable combinations of interaction and initial state.

U

(Unpublished “work” by B. Schumacher and CHB)

##00

##00?

U

!!

Post 

selection

yes

!!""

1

2

3

Bell 

measurement

Time travel can be simulated using entanglement and post selection

If the post selection was successful, qubit 1 may be viewed as a

time-reversed version, and qubit 3 may as a time-traveled version of 

qubit 2’.  The overall input-output state mapping is what it would 

have been with  a physical time machine, for 0,1 basis states, and for 

arbitrary superpositions.  Pure inputs are mapped to pure outputs. 

2’

Time-like Loop (Deutsch, Bennett and Schumacher)

Interaction with one’s past self using an exotic physical time machine !



Entanglement assisted state preparation and channel simulation

Charles Bennett, IBM, Watson (ITP Quantum Info Conference 12/7/01) 12

Interaction with one’s past self using an exotic 

physical time machine, such as a Wormhole
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time-reversed portion of trajectory

!!""

Grandfather type paradoxes give rise to constraints on 

allowable combinations of interaction and initial state.

U

(Unpublished “work” by B. Schumacher and CHB)

##00

##00?
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Post 
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!!""

1
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3

Bell 

measurement

Time travel can be simulated using entanglement and post selection

If the post selection was successful, qubit 1 may be viewed as a

time-reversed version, and qubit 3 may as a time-traveled version of 

qubit 2’.  The overall input-output state mapping is what it would 

have been with  a physical time machine, for 0,1 basis states, and for 

arbitrary superpositions.  Pure inputs are mapped to pure outputs. 

2’

Time-like Loop (Deutsch, Bennett and Schumacher)

Time-travel can be simulated using entanglement and post selection.



Computation Depth

How can we obtain a parallel algorithm for a given task? 

➡ Depth complexity

➡ Fault Tolerant Implementation 

MBQC. The longest feed-forward chain
QCircuit. The Layers number 



Depth Complexity

All the models for QC are equivalent in computational power.

Theorem. There exists a logarithmic separation in depth complexity 
between MQC and circuit model. 

A. Broadbent and E. Kashefi, MBQC07

Figure 11: A classically controlled implementation of a controlled-unitary gate.
The computational basis measurement operator is represented by the half-circle
box with Z label. After measurement is pushed to the beginning of the wire the
unitary U will be only classically dependent (doted line) on the first wire.

7.2 From patterns to circuits

The construction of Definition 7.2 can be also used in reverse order to trans-
fer a pattern to a corresponding circuit, where all the auxiliary qubits will be
removed and hence by doing so the quantum depth might increase. However,
it is possible to obtain another transformation from patterns to circuits where
one keeps all the auxiliary qubits. This new construction is simply based on the
well-known method of coherently implementing the measurements. Recall that
a controlled-unitary operator where the control qubit is measured in the compu-
tational basis (|0〉, |1〉) can be written as a classical controlled unitary by pushing
the measurement before the controlled-unitary operator [2], see Figure 11.

Given a pattern in the standard form, we use the above scheme in the reverse
order to convert the classically dependent measurements and corrections, and
then push all the independent measurements to the end of the pattern. However
since the scheme works only for the computational basis measurement we have
to first simplify all the arbitrary measurements Mα. Let P (α) be the phase
gate and H the Hadamard gate (as defined in the Appendix), and let MZ be
the computational basis measurement. Then we have

Mα = M (|+α〉,|−α〉) = M{HP (−α)}
†
(|0〉,|1〉) = MZHP (−α) . (16)

It is important to note that replacing a classical dependency with a sequence
of ∧X and ∧Z will create a quantum depth linear in the number of the de-
pendencies, as shown in Figure 12. However we can use the following result on
parallelizing a circuit with only controlled-Pauli to logarithmic depth:

Proposition 7.6. [4] Circuits of n qubits consisting of controlled-Pauli gates
and the Hadamard gate can be parallelized to a circuit with O(log n) depth with
O(n2) auxiliary qubits.

Definition 7.7. Let P be a standard pattern with computational space (V, I, O),
underlying geometry (G, I, O) and command sequence (after signal shifting):

· · ·CCj

j · · · [Mαi

i ]Ai · · ·EG

26

QC in a nutshell

Ω(logn)
Parity function: MQC needs 1 quantum layer and                  classical layers whereas in the 
circuit model the quantum depth is  



Figure 9: A quantum circuit with ∧Z and J gates, together with the two-step
construction of the corresponding labelled entanglement graph. In the final
step, we followed our common notation of representing an input qubit by a
boxed vertex and an output qubit with a white vertex. The black vertices will
be measured with angles α, β and γ, as shown in the figure.

24

Parallelising Quantum Circuits

Theorem. Forward and backward translation between 
circuit model and MQC can only decrease the depth.

Figure 9: A quantum circuit with ∧Z and J gates, together with the two-step
construction of the corresponding labelled entanglement graph. In the final
step, we followed our common notation of representing an input qubit by a
boxed vertex and an output qubit with a white vertex. The black vertices will
be measured with angles α, β and γ, as shown in the figure.
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Figure 12: Implementing coherently the sequence of dependent measurements
in a pattern. An arbitrary measurements Mα’s is represented by half circle
with label being the angles. The Hadamard and Phase gates are shown with
square boxes. The Equation 16 is used to simplify the measurements. After
replacing the X-dependencies by ∧X gates we obtain a quantum depth linear
in the number of dependencies.
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Characterisation 

Figure 13: An even number of Pauli measurements between two non-Pauli mea-
surement lead to an indirect X-dependency after signal shifting.

to have a sequence of Z dependencies between Ni and β, P ∗
1 should satisfy

the conditions of cases (I) or (II) and then similar to the above argument in
order to obtain an X-dependency between Ni and Nj, P ∗

2 should also satisfy
the conditions of cases (I) or (II) and hence we obtain the statement of the
lemma.

Proposition 8.3. Let P be a pattern with flow function f , where standardiza-
tion and signal shifting have been performed. The computation depth is equal
to 3 if and only if for any two consecutive non-Pauli measurement Ni or Nj

either condition of Lemma 8.2 is satisfied or qubit i is either an input qubit or
the flow image of a degree one qubit measured with the Pauli Y .

Proof. A pattern has computation depth 3 if and only if there exists only
two layers of measurements. Now consider two consecutive non-Pauli measure-
ment Ni or Nj which do not satisfy the condition of Lemma 8.2, hence after
signal shifting there will be an X-dependency between them. Now qubit i should
belong to the first layer of measurement and therefore from Proposition 8.1 it
must be either an input qubit or flow image of a degree one qubit measured
with the Pauli Y .

The recursive structure of the above proof can be easily extended to any other
depth, for simplicity we present this recursive structure with a new compact
rewriting system.

Theorem 8.4. A pattern P has depth d +2 (d +1) if and only if on any influ-
encing path we obtain P ∗N i≤dP ∗ ({Y, ∅}N i≤dP ∗), after applying the following
rewriting rule:

N P ∗
1 α1β1 P ∗

2 α2β2 · · · P ∗
k N

{

NN if ∀P ∗
i #= X(XY )∗

N otherwise

Proof. The proof is obtained from Lemma 8.2 and Proposition 8.1.

The above theorem gives a constructive method to obtain a depth d pattern.
The main tool being the sequence X(XY )∗, which if it is inserted between two
non-Pauli measurements make them independent of each other. Whereas any
other sequence for insertion between non-Pauli angles contribute to depth and
make the two non-Pauli measurement X-dependent on each other and hence in
two different layer of measurements.
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Theorem. A pattern has depth               if and only if on any influencing path we 
obtain                      after applying the following rewriting rule:



By applying our theorem ??, we see that we can perform the parity com-
putation in the MQC with constant quantum depth and classical logarithmic
depth (PUT MORE DETAIL HERE) (actually, Parity is in Clifford, and we
already knew that Clifford was in depth 1 [8]).

9.2 A circuit example

|ψ1〉 α11 • H α12 • H · · · α1n • H

|ψ2〉 • α21 • H • α22 • H · · · • α22 • H

|ψ3〉 • α31 • α32 · · · • α32
...

. . .
. . .

. . .
|ψn−1〉 • H • H · · · • H

|ψn〉 • αn1 • αn2 · · · • αnn

Figure 16: A quantum circuit that can be implemented in the MQC with quan-
tum depth 2 and classical depth n.

Question: any known results on circuits that can be applied to above exam-
ple?

9.3 Quantum Fourier transform

It would be so cool if we could show that our algorithm gives the same parallel
circuit for the approximate Fourier transform. Or maybe we can improve the
results and give parallel circuit for the exact Fourier transform? ([2])

Semi-classical Fourier transform?

10 Conclusions
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Example

Can be parallelised to a pattern with depth 2


