
NEST, Scuola Normale Superiore 
and Istituto Nanoscienze-CNR

Gaussian Bosonic Channels:
conjectures, proofs, and 

bounds
Vittorio Giovannetti

CM
condensed
matterand
quantumin
formation

A. S. Holevo  (Steklov, Moskov)

R. Garcia-Patron (University Libre Bruxelles)

N. J. Cerf  (University Libre Bruxelles)

A. Mari  (SNS, Pisa)

G. De Palma  (SNS, Pisa)

S. LLoyd (MIT, Boston)

IICQI14



min
⇢

F(�(⇢)) = min
⇢G

F(�(⇢G))

THE RESULT IN A 

NUTSHELL

“CERTAIN FUNCTIONALS* EVALUATED AT THE OUTPUT OF 
A BOSONIC GAUSSIAN CHANNEL (BGC)

ARE OPTIMIZED (SAY MINIMIZED) 
BY GAUSSIAN INPUT STATES”

*VON NEUMANN ENTROPY
RENYI ENTROPIES

CONCAVE FUNCTIONALS
HOLEVO INFORMATION

“Pares cum paribus 
facillime congregantur”

Cicero, De Senectute



Outlook 

1. Sending classical messages over a quantum channel

2. Bosonic Gaussian Channels (BGCs)
 
3. “The Conjectures” 

4. Solutions

5. Conclusions and Perspectives



1.Sending classical messages over a quantum channel
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C = max
p(x)

H(X : Y )

MUTUAL INFORMATION of X, YH(X : Y ) = H(X) + H(Y )�H(X, Y )

Shannon NOISY CHANNEL CODING THEOREM

H(X) = �
�

x

p(x) log2 p(x)

C = max
achievable

R = lim
��0

lim sup
N�⇥

⇥
log2 M

N

���� CM,N such that Perr(C) < �

⇤

single letter formula ... 
no regularization needed over N



 Sending classical messages 
on a Quantum Channel

�� = �(�)

input state of
the carrier

output state of 
the carrier

��

INPUT/OUPUT 
FORMALISM 

Linear, Completely Positive, Trace 
Preserving (LCPT) mapping



C = max
achievable

R = lim
��0

lim sup
N�⇥

⇥
log2 M

N

���� CM,N such that Perr(C) < �

⇤

As in the classical theory we can define the CAPACITY of the Channels as:
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Holevo-Schumacher-Westmoreland (HSW)

CHANNEL CODING THEOREM (I)

= HOLEVO  INFO of the ensemble

= ensemble of input states of the 
information carrier

= output ensemble associated with 

= HOLEVO CAPACITY 
OF THE CHANNEL �

if we restrict the ENCODING to only those which produce SEPARABLE (non entangled) CODEWORDS, then

�

�

�

�

MAXIMIZED OVER ALL 
POSSIBLE

ENSEMBLES

HOLEVO IEEE 44, 269 (1998)
SCHUMACHER and WESTMORELAND

PRA 56, 2629 (1998)

C1(�) ⌘ max

ENS
C�(�(ENS))

ENS = {⇢j ; pj : ⇢j 2 S(H)}
�(ENS) = {�(⇢j); pj : ⇢j 2 S(H)} ENS

ENSC�(ENS) = S(
X

j

pj⇢j)�
X

j

pjS(⇢j)



MAXIMIZED OVER ALL 
POSSIBLE

 N-dim ENSEMBLES

= HOLEVO CAPACITY OF THE CHANNEL ��N

if we allows for ANY ENCODING including those which produce ENTANGLED CODEWORDS, then

�

�

�

�

REGULARIZATION 
OVER CHANNEL USES

Holevo-Schumacher-Westmoreland (HSW)

CHANNEL CODING THEOREM (II)

C(�) = lim
N!1

C1(�⌦N )

N

C1(�
⌦N

) = max

ENS
C�(�

⌦N
(ENS))



C(�) � C1(�)



ADDITIVITY ISSUE:

C is no longer a single expression formula (we have to take the limit over arbitrarily 
large N).
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C(�) = lim
N!1

C1(�⌦N )

N

still, for some special channels it may be the case that the additivity holds ...



2. Bosonic Gaussian Channels (BGCs) 



 Bosonic Gaussian Channels (BGCs) 

a = [a1, . . . , as]
t

each INPUT SYSTEM is a collection of 
(say) s  independent optical modes

displacement (or Weyl) operators

z = (z1, z2, · · · , zs)t

�(z) = Tr[⇢D(z)]
Symmetrically 
Ordered 
Characteristic 
Function

,

annihilation operator of the j-th mode

h
aj ,a

†
k

i
= �jk

D(z) = exp[a†z � z†a] = exp

Ps
j=1

⇣
zja

†
j � z⇤j aj

⌘

⇢ =
1

⇡s

Z
d2sz�(z)D(�z)

ALICE BOB



is a Gaussian state iff �(z) is a Gaussian function⇢A state 

Vacuum state, 
Coherent states, 
Squeezed states, 
Thermal states.

is a BGC if it sends Gaussian input states       into output Gaussian states A LCPT map � ⇢ �(⇢)

Attenuation (loss), Amplification, Squeezing, Thermalization processes 

�ALICE BOB

ALICE

BOB

Holevo, Werner PRA 63, 1997

Caves, Drummond RMP 1994

 Bosonic Gaussian Channels (BGCs) 



µ � ±1

2

�
I �KK†�

for phase-covariant 
channels (multimode channels)

�(z) = Tr[⇢D(z)] !
BOSONIC GAUSSIAN 

CHANNEL

! �0
(z) = Tr[�(⇢)D(z)] = �(K†z) exp[�z†µz]

 Bosonic Gaussian Channels (BGCs) 



a

Attenuator (or thermal) 
single mode channel (s=1) �0(z) = �(

p
⌘z) e�(1�⌘)(N+1/2)|z|2

b

Thermal 
reservoir with 
mean photon 

number

EN
⌘ (⇢) = TrE [U(⇢⌦ �E)U

†] E0
⌘ (⇢) = TrE [U(⇢⌦ |ØihØ|)U†]

N=0

purely lossy channel (minimal 
noise attenuator)

⌘ 2 [0, 1]

N � 0

Beam Splitter
transformation

 Bosonic Gaussian Channels (BGCs) 

BOBALICE



a

Amplifier channel single mode channel (s=1)

b

Parametric 
Amplifier 
of gain 

AN
 (⇢) = TrE [U(⇢⌦ �E)U

†]

�0(z) = �(
p
z) e�(�1)(N+1/2)|z|2

Thermal 
reservoir with 
mean photon 

number N � 0

 � 1

 Bosonic Gaussian Channels (BGCs) 

BOBALICE



a

b
Parametric 
Amplifier 
of gain 

ÃN
 (⇢) = TrS [U(⇢⌦ �E)U

†]
weak complementary of an amplifier channel

�0(z) = �(�
p
� 1z⇤) e�(N+1/2)|z|2

THIS IS AN ENTANGLEMENT 
BREAKING CHANNEL: we can 

always represent it as a measure and 
re-prepare channel

Thermal 
reservoir with 
mean photon 

number N � 0

 � 1

 Bosonic Gaussian Channels (BGCs) 

BOB

ALICE



ADDITIVE 
CLASSICAL 

NOISE 
CHANNEL

Nn(⇢) =

Z
d2µ Pn(µ) D(µ)⇢D†(µ)

�0(z) = �(z) e�n|z|2

random 
diffusion in 
phase space

 Bosonic Gaussian Channels (BGCs) 



VACUUM VACUUM

� =

VG et al PRA 2004
Garcia-Patron et al. PRL 2012


⌘

This set of maps is 
closed under channel 
c o n c a t e n a t i o n 
(semigroup structure)

(1) Because a unital channel increases entropy (the out-
put always majorizes the input [1]), Eq. (18) implies that the
entropy S(Nn!!") at the output of the classical channel is an
increasing function of n, i.e., for any ! and "#0,

S„Nn+"!!"… # S„Nn!!"… . !21"

(2) Because Nn is unital, we can also infer that the en-
tropy S(E$

N!!") at the output of the thermal-noise channel is
an increasing function of N. This follows because for any !
and "#0 we have that

S„E$
N+"!!"… = S„!N"!1−$" ! E$

N"!!"… # S„E$
N!!"… , !22"

where Eq. !18" and the first equality of Eq. !20" have been
used.

(3) Using (19) with N1=N2=N in conjunction with rela-
tion (11) shows that the minimum output entropy of the
thermal-noise channel is a decreasing function of $,

S!E$
N" # S!E$!

N " for $! # $ . !23"

Note, however, that the output entropy S(E$
N!!") is not a de-

creasing function of $ for every !. This is because the
thermal-noise map does necessarily increase the entropy of
the input. Consider what happens when the channel input is a
thermal state with an average photon number N0 satisfying
N0%N, so that g!N0"%g!N" holds. According to Eq. !17",
the output state is a thermal state with an average photon
number $N0+ !1−$"N&N0. Its entropy is therefore g($N0
+ !1−$"N), which is smaller than g!N0" and is an increasing
function of $.

!4" A stronger version of !23" can be obtained by using
relation !19" with N1!N2. In this case, !11" implies

S!E$
N" # S!E$!

N!" for $! # $ , !24"

and N#N!!1−$!" / !1−$".

!5" The transmissivity inequality in !23" can be inverted
if the thermal photon numbers are appropriately chosen, viz.,

S!E$
N" # S!E$!

N!" for $ # $!, !25"

where now N!' #!1−$"N+$!−$$ / !1−$!". This relation is
proven in Appendix B and, together with !22"–!24", is illus-
trated in Fig. 2.

!6" Using the first equality in Eq. !20", along with !11",
we can establish the following relation between the mini-
mum output entropies of the classical- and thermal-noise
maps,

S!E$
N" = S!N!1−$"N ! E$

0" # S!N!1−$"N" . !26"

Physically, this says that deleting the pure-loss beam-splitter
map E$

0 can only decrease the output noise. An important
consequence of !26" is that if conjecture !i" holds for the
classical-noise channel, then it must also hold for the
thermal-noise channel.

!7" The reverse counterpart of !26" is given by

S!Nn" # S!E1−n!
!n−n!"/n!" , !27"

for all n!! #0,min%1,n&$ !see Appendix B for the deriva-
tion". The key consequence of !27" is that if conjecture !i"
is true for the thermal-noise channel, then it is must also
be valid for the classical-noise channel.

FIG. 1. Top panel: graphical representations of the thermal- and
classical-noise channels’ CP maps; the signal photons propagate
from left to right in these diagrams. Bottom panel: composition
rules for these channel models; from top to bottom are representa-
tions of Eqs. (18), (19), and (20), respectively.

FIG. 2. Plot of the minimum entropy regions for the thermal-
noise channel as constrained by (22)–(25). Each !$ ,N" point corre-
sponds to a different thermal-noise channel described by the CP
map E$

N. Given a channel with transmissivity $1 and average ther-
mal photon number N1, the gray (hatched) region represents chan-
nels whose minimum entropies are greater (less) than S!E$1

N1". [The
line !$ ,0" has minimum entropy zero, and belongs to the hatched
region.] In the white regions, the composition rules from this sec-
tion do not establish the relation between S!E$

N" and S!E$1
N1"; in Fig.

6 these regions will be partially filled by exploiting the lower
bounds that will be introduced in Sec. V. Showing that the upper
white region is gray and the lower white region is hatched would
complete the proof of conjecture (i). Regions 1 and 4 follow from
(22) and (23), regions 3 and 6 follow from (24), while regions 2 and
5 are consequences of (25). The plot assumes $1=0.7 and N1=0.6.

GIOVANNETTI et al. PHYSICAL REVIEW A 70, 032315 (2004)

032315-4

lossy channel minimal noise 
amplifier A0


E0
⌘

�[| ih |] = (A0
 � E0

⌘ )[| ih |]

 Bosonic Gaussian Channels (BGCs) 



Input energy 
constraint

Holevo, Schumacher, Westmoreland (HSW) theorem

C�( ) = sup
ENS

8
<

:S( (⇢ENS))�
X

j

pjS( [⇢j ])

9
=

;

C(�) = lim
m!1

1

m
C�(�

⌦m)

CLASSICAL CAPACITY PROBLEM: how much CLASSICAL information 
can we transfer over these channels?

regularization 
over

channel uses
(Hastings 2008)

Tr[a†jaj⇢]  E
maximum mean 

energy per 
channel use

ENS = {pj , ⇢j}

 Bosonic Gaussian Channels (BGCs) 



3. “The Conjectures” 



“The Conjectures” 

Optimal Gaussian ensemble Conjecture 

        “The maximization of C can be performed   
over the set of Gaussian ensembles”

Holevo, Werner PRA 63, 1997

C(EN
⌘ ;E) = g(⌘E + (1� ⌘)N)� g((1� ⌘)N)

g(x) = (x+ 1) log2(x+ 1)� x log2 x 0.5 1.0 1.5 2.0 2.5 3.0
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VG et al. PRL 2004

PROVED FOR N=0 
(purely lossy channel)

Gaussian Additivity Conjecture

        “The output Holevo information is additive 
(i.e. no regularization over is required)”



GIOVANNETTI,GUHA,LLOYD,
MACCONE, SHAPIRO,YUEN,
 PRL 2004

PROVED FOR N=0 
(purely lossy channel)

shortcut

{p(↵), |↵i}

6 lim
m!1

[S
max

([E0
⌘

]⌦m)� S
min

([E0
⌘

]⌦m)]/m

6 S
max

(E0
⌘

)

“The Conjectures” 

C(E0
⌘ ) = lim

m!1
sup
ENS

[S([E0
⌘ ]

⌦m(⇢ENS))�
X

j

pjS([E0
⌘ ]

⌦m[⇢j ])]/m

coherent states

THERE EXISTS AN ENSEMBLE 
THAT SATURATES THE BOUND!!!!

gaussian 
ensemble

ENS =

E0
⌘ (|↵ih↵|) = |p⌘↵ihp⌘↵|

sho
rtc

ut

S(E0
⌘ (|↵ih↵|)) = 0



Optimal Gaussian ensemble Conjecture 

        “The maximization of C can be performed   
over the set of Gaussian ensembles”

Gaussian Additivity Conjecture

        “The output Holevo information is additive (i.e. 
no regularization over is required)”

Holevo, Werner PRA 63, 1997

=)

Minimum Output Entropy Conjecture

        “The Von Neumann Entropy at the output of 
the channel is minimized by coherent input states 

(say the vacuum)”

VG et al. 2004

C(�) = lim
m!1

sup
ENS

[S(�⌦m(⇢ENS))�
X

j

pjS(�
⌦m[⇢j ])]/m

6 lim
m!1

[S
max

(�⌦m)� S
min

(�⌦m)]/m

If MOE is true   then the upper bound coincides with 
the value attainable by Gaussian encoding

shortcut

CLASSICAL 
CAPACITY=) good luck ...

QIT-EQIS ERATO Conference (2003)

“The Conjectures” 
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Minimum Output Entropy Conjecture

        “The Von Neumann Entropy at the output of 
the channel is minimized by coherent input states 

(say the vacuum)”

Beam 
Splitter

Thermal reservoir 
with mean photon 

number N

INPUT
 SIGNAL

OUTPUT 
SIGNAL

“The Conjectures” 

VG, Guha, Lloyd, Maccone, 
Shapiro, PRA 2004



IV. GAUSSIAN INPUT STATES

Here we show that conjecture (i) is true if we restrict the
channel input to be a Gaussian state !G. Such an input has a
symmetric characteristic function that is a Gaussian form [9],

"!#" = exp#− $0 · $† −
1
2

$ · % · $†$ , $ % !# * ,− #" ,

which is fully characterized by its first moment $0
%!&a' , &a†'" and its covariance matrix

% % #&(&a,&a†)'/2 &!&a†"2'
&!&a"2' &(&a,&a†)'/2 $ !28"

(here &·'%Tr*·!G+ is expectation with respect to !G, &a%a
− &a', and (· , · ) denotes the anticommutator). The coherent
state ,'' is Gaussian with %=1/2 and $0= !' ,'* ". The en-
tropy of !G depends only on its covariance matrix [9,16,29]
and is equal to g!-det %−1/2". Both E(

N and Nn transform
Gaussian input states into Gaussian output states. Moreover,
by means of Eq. (17), evolution under these CP maps trans-
forms covariance matrices according to

% → %! = . % + n1 for Nn,
(% + !1 − ("!N + 1/2"1 for E(

N, / !29"

and first moments according to $0→$0 for Nn, and $0
→-($0 for E(

N. The output entropy of a Gaussian input state
is, hence, equal to g!-det %!−1/2", which is always greater
than or equal to the output entropy of the vacuum, i.e., the
right-hand side of Eq. (12), as we now will show.

For the classical map Nn it is possible to rewrite (29) as

det %! = det % + n!n + &(&a,&a†)'" , !30"

which is always greater than !n+1/2"2 because &(&a ,&a†)'
)1 and, from the strong version of the uncertainty relation
[17,18], det %)1/4. In other words, we have that

S„Nn!!G"… = g!-det % + n!n + &(&a,&a†)'" − 1/2" ) g!n" .
!31"

Likewise, we see that conjecture (i) is true for the
thermal-noise channel E(

N whose input is limited to be a
Gaussian state because

det %! = (2 det % + !1 − ("!N + 1/2"*!1 − ("!N + 1/2"

+ (&(&a,&a†)'+ , !32"

which implies det %!) *!1−("N+1/2+2.

V. LOWER BOUNDS

In this section we present some lower bounds on the out-
put entropy. These bounds are consistent with conjecture (i),
and collectively they are asymptotically tight in the limits of
low and high noise. We will treat the two channel models in
succession, starting with the classical-noise case.

A. Classical-noise channel
Because g!n" is the output entropy that results when the

input is a coherent state, g!n" is an upper bound on the mini-

mum output entropy S!Nn" of the classical-noise channel.
Four different lower bounds on S!Nn" are given below. As
seen in Fig. 3, bound a is implied by bound d and bound b is
implied by bound c. Nevertheless, we explain all of them
because the derivations of a and b are simpler. In the limits
of low and high values of the noise parameter n, it can be
shown that this collection of bounds is asymptotically tight,
i.e., limn→0 Sc!Nn" /g!n"=limn→* Sd!Nn" /g!n"=1, where
S j!Nn" denotes bound j.

Lower bound a. By considering the Husimi function of
the output state, we find that for n)1,

S!Nn" ) g!n − 1" , !33"

by the following argument. Any initial state ! can be written
as [19]

! =0 d2'Q!'"+!'" , !34"

where Q!'"%&',!,'' /, is that state’s Husimi function and

+!'" =0 d2-

,
D!-"e-*'−-'*+,-,2/2. !35"

Under the action of the map Nn, the state ! evolves to

Nn!!" =0 d2'Q!'"Nn„+!'"… . !36"

The operator Nn(+!'") is not in general a quantum state.
However, for n.1 it is a displaced thermal state with aver-
age photon number n−1, i.e.,

Nn„+!'"… = D!'" 0 d2#

,

e−
,#,2

n−1

n − 1
,#'&#,D†!'"

= D!'"
1
n1n − 1

n 2a†a
D†!'" , !37"

which has entropy g!n−1". Lower bound a then can be ob-

FIG. 3. Bounds on the minimum output entropy of the classical-
noise channel Nn vs average photon number of the classical noise,
n. Curves a, b, c, and d are the lower bounds given in (33), (38),
(39), and (41), respectively. The upper bound u is the function g!n".
The minimum entropy S!Nn" is constrained by these bounds to lie
in the gray region, and is required to be an increasing function of n.
Conjecture (i) states that S!Nn"=g!n".
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tained from Eq. (36) because Q!!" is a probability distribu-
tion, and the von Neumann entropy is concave [13].

Lower bound b. By considering the Rényi entropy
S2!"!"#−ln Tr$!"!"2% calculated on the channel output "!
=Nn!"", we find

S!Nn" # ln!2n + 1" , !38"

via two simple steps. As discussed in [8], it is possible to
show that S2!"!" achieves its minimum ln!2n+1" when the
channel input is a coherent state. Lower bound (38) is then a
trivial consequence of the von Neumann entropy S being
greater than or equal to the Rényi entropy S2 [20].

Lower bound c. By using a more sophisticated connection
between the von Neumann entropy and the Rényi entropy
[21,22], we find for k#1 an integer and n! $!k−1" /2 ,k /2%,

S!Nn" # − $k!n"ln $k!n" − $1 − $k!n"%ln
1 − $k!n"

k
,

!39"

where

$k!n" =
1 − &1 − !k + 1"„1 − k/!2n + 1"…

k + 1
. !40"

The derivation of (39) is shown in Appendix C.
Lower bound d. Using the properties of the map Nn we

find

S!Nn" # 1 + ln n , !41"

as we now demonstrate. Consider a pure state '%( that gen-
erates an output state with spectral decomposition,

"! = Nn!'%()%'" = *
k

&k'&k()&k' , !42"

where +&k, is a probability distribution and +'&k(, are the
orthonormal eigenvectors. From definition (4) of the
classical-noise channel’s CP map, we have

&k = )&k'"!'&k( =- d2'Pn!'"')&k'D!'"'%('2. !43"

The quantity ')&k'D!'"'%('2 is a probability distribution over
k, and ')&k'D!'"'%('2 /( is a probability distribution over '
[23]. Therefore, the convexity of xz for z#1 ensures that

Tr$!"!"z% = *
k
.- d2'Pn!'"')&k'D!'"'%('2/z

) *
k
- d2'

(
!(Pn!'""z')&k'D!'"'%('2. !44"

Because Pn!'" is a Gaussian, it follows that

$(Pn!'"%z =
(Pn/z!'"

znz−1 , !45"

and the right-hand side of (44) can be rewritten in terms of
the image of '%( under the action of the map Nn/z, i.e.,

Tr$!"!"z% )
Tr$Nn/z!'%()%'"%

znz−1 =
1

znz−1 . !46"

This relation can be used to calculate a lower bound for the
von Neumann entropy by observing that [20]

S!"!" = lim
z→1

−
ln Tr$!"!"z%

z − 1
# lim

z→1

ln!znz−1"
z − 1

= 1 + ln n .

!47"

Inequality (47) applies for any pure state '%(, so we conclude
that (41) holds.

B. Thermal-noise channel

The same techniques that we used to derive lower bounds
for the classical-noise channel can also be employed for the
thermal-noise channel E*

N. The bounds we obtain in this case
are reported in Figs. 4–6.

Lower bound A. Repeating the Husimi function calcula-
tion employed above, we find

FIG. 4. Bounds on the minimum output entropy of the thermal-
noise channel E*

N as functions of channel transmissivity * for N
=1/2. Curves A, E, and F are the lower bounds (48), (50), and (51),
respectively. [Here E is the maximum over k of the right-hand side
of (50) and F is the maximum over k of the right-hand side of (51).]
Curves B, C, and D are the lower bounds (38), (39), and (41),
respectively, with n= !1−*"N. The upper bound u is the function
g(!1−*"N). The minimum output entropy S!E*

N" is constrained to
lie in the gray region, and is required to be a decreasing function of
*. Conjecture (i) states that S!E*

N"=g(!1−*"N).

FIG. 5. Same as Fig. 4 but for different values of the parameter
N: in the left plot N=0.1, in the right plot N=10. At both high and
low average thermal photon numbers, the greatest of these lower
bounds approaches the upper bound.
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3

on the capacity C whenever the maps are entanglement-
breaking, i.e. when ⌘ 6 N/(N + 1) for EN

⌘

, when n > 1
for N

n

, and when N > 1/(� 1) for AN



[20]. For in-
stance, exploiting this fact, inequality (4) can be de-
rived by replacing the term S

min

(EN

⌘

) of (11) with the
single-mode lower bound A of Ref. [7]. More gener-
ally, the same approach exploited in [7] can be adapted
to the multi-channel use scenario to construct tight in-
equalities directly for the quantities S

min

([EN

⌘

]⌦m)/m
and S

min

([N
n

]⌦m)/m. When substituted into (10) to-
gether with the identities (12) these then translate into
a collection of upper bounds for C that hold beyond the
entanglement-breaking regime detailed above.

a

(2)

(5)

(16)

(17)

(4)

(27)

(1)

(3) of Ref.4

(24)

(8) of Ref.5
(9) of Ref.5

c

(3)

(6)

(28)

b

FIG. 2: Plots of the bounds in regimes that emphasize the gap
between the lower and the upper bounds (these regimes are
typically not interesting in practical applications). a Capacity
of the Gaussian channel Nn for N̄ = 1. Dash-dot curve: lower
bound (2); dotted, continuous, dashed curves: upper bounds
(5), (16), and (17), respectively. The gray area emphasizes the
gap between the best upper and lower bounds. b Capacity
of the thermal bosonic channel EN

⌘ . Dash-dot curve: lower
bound (1); dotted curve: upper bound (4) (valid only for
⌘ 6 N/(N + 1) shown as a vertical dotted line where the
channel becomes entanglement breaking); dashed curves and
star for ⌘ = 1/2: König and Smith’s bounds from Refs. [4] and
[5] respectively; continuous lines: upper bounds (24) and (27).
Here N = 1 thermal photons and N̄ = 1 average photons in
the signal (which gives bits-per-photon for each channel use).
c Plots of the bounds for the amplifier AN

 with gain . Dash-
dot curve: lower bound (3); dotted curve: upper bound (6)
(valid only for  > (N + 1)/N); continuous curve: upper
bound (28). The discontinuity for  = (N + 1)/N (vertical
dotted line) separates the entanglement breaking regime on
the right from the pure-loss regime on the left. Here N = 3
and N̄ = 1.

Bounds for the Additive Classical noise channel N
n

:—
As detailed below, the bounds a, b, and d of Ref. [7] for

m = 1 can be generalized to arbitrary m as follows

S
min

(N⌦m

n

)/m > g(n� 1) , [8n > 1] (13)

S
min

(N⌦m

n

)/m > log2(2n+ 1) , (14)

S
min

(N⌦m

n

)/m > 1 + log2(n) , (15)

whence, using (10), Eq. (13) gives (5), while Eqs. (14)
and (15) respectively give the further bounds

C(N
n

) 6 g(N̄ + n)� log2(2n+ 1) , (16)

C(N
n

) 6 g(N̄ + n)� 1� log2(n) , (17)

[the generalization of the bound c of [7] is not reported
here since it converges to Eq. (14) for m ! 1]. These
bounds are compared to the lower bound (2) in Fig. 2(a):
note how the gap between the upper and lower bounds
closes asymptotically for high noise, n ! 1.
The proof of Eq. (13), and hence of the bound (5), was

given in Ref. [22] by expanding a generic input state ⇢
in terms of its multi-mode Husimi distribution function
and applying the concavity of von Neumann entropy. An
alternative proof follows from inequality a of Ref. [7] and
from (11), using the fact that the channel N

n

is entan-
glement breaking for n > 1 [20].

The proof of Eq. (14) exploits the fact that the von
Neumann entropy is never smaller than the Rényi en-
tropy of order 2 [24, 25] i.e. S(⇢) > S2(⇢) := � log2 Tr[⇢

2].
Thus, for all input density matrices ⇢ of m channel uses
we have

S(N⌦m

n

(⇢)) > S2(N⌦m

n

(⇢)) > m log2(2n+ 1) , (18)

where the last inequality follows from the fact that the
minimum Rényi entropy of integer order at the output of
the channel N

n

is additive and saturated by the vacuum
input state [26]. The bound (14), and hence (16), follow
by minimizing with respect to ⇢.
The proof of Eq. (15) closely follows the proof of bound

d in Ref. [7] form = 1. Indeed, given a generic pure input
state | i, the eigenvalues �

k

of the relevant output state
⇢0 = N⌦m

n

(| ih |) can be expressed as

�
k

=

Z
d2m~µ P (m)

n

(~µ)|h�
k

|D(~µ)| i|2 , (19)

where |�
k

i is the corresponding eigenvector of ⇢0, D(~µ)

is the m-mode displacement operator, P
(m)
n

(~µ) :=
exp[�|~µ|2/n]/(⇡n)m, and the integral is performed over
the m-dimensional complex vectors ~µ 2 Cm. By convex-
ity, for all z > 1 one can write

Tr[(⇢0)z] 6
X

k

Z
d2m~µ

⇡m

[⇡mP (m)
n

(~µ)]z|h�
k

|D(~µ)| i|2

= 1/(znz�1)m , (20)

which gives inequality (15), and hence (17), by remem-
bering that S(⇢0) = lim

z!1+ log2 Tr[(⇢
0)z]/(1� z) [24,

25].

VG, Lloyd, Maccone, Shapiro 
Nat Phot 2013.
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 Solution

VACUUM

� = 
⌘

| i | i

|Øi |Øi

SINCE VACUUM GOES TO THE VACUUM UNDER PURELY 
LOSSY CHANNEL, PROVING MOE FOR THE AMPLIFIER 

�[| ih |] = (A0
 � E0

⌘ )[| ih |]

VACUUM

| i

VACUUM

|Øi

STEP I

E0
⌘ [|ØihØ|] = |ØihØ|

Giovannetti, Holevo, Garcia-Patron arXiv:
1312.2251 COMM. MATH. PHYS.



| i

VACUUM

|Øi

A0
[| ih |]

Ã0
[| ih |]

THIS IS A PROPER 
STINESPRING 

REPRESENTATION FOR THE 
CHANNEL: there for pure 

inputs we have

S(Ã0
[| ih |]) = S(A0

[| ih |])

... BUT now we can use once 
more the LOSSY+minimal 

NOISE AMPLIFIER 
decomposition to express 

STEP II

STEP III

PHASE CONJUGATION
IT DOESN’T CHANGE THE 

SPECTRUM ... hence the
entropy: WE CAN NEGLET IT!

Ã0
[| ih |] = T �A0

 � E0
⌘0 [| ih |]

 Solution Giovannetti, Holevo, Garcia-Patron arXiv:
1312.2251 COMM. MATH. PHYS.



| i

VACUUM

|Øi

A0
[| ih |]

Ã0
[| ih |]

THIS IS A PROPER 
STINESPRING 

REPRESENTATION FOR THE 
CHANNEL: there for pure 

inputs we have

S(Ã0
[| ih |]) = S(A0

[| ih |])

... BUT now we can use once 
more the LOSSY+minimal 

NOISE AMPLIFIER 
decomposition to express 

STEP II

STEP III

LUCKY STRIKE

SAME GAIN PARAMETER!!

BINGO!!!!

PHASE CONJUGATION
IT DOESN’T CHANGE THE 

SPECTRUM ... hence the
entropy: WE CAN NEGLET IT!

Ã0
[| ih |] = T �A0

 � E0
⌘0 [| ih |]

 Solution Giovannetti, Holevo, Garcia-Patron arXiv:
1312.2251 COMM. MATH. PHYS.



Step IV

S(A0
[| ih |]) �

X

j

pjS(A0
k[| jih j |])

= S(A0
(
X

j

pj | jih j |) �
X

j

pjS(A0
[| jih j |])

S(A0
[| ih |]) = S(Ã0

[| ih |]) = S(A0
 � E0

⌘0 [| ih |])

E0
⌘0(| ih |) =

X

j

pj | jih j |

 Solution Giovannetti, Holevo, Garcia-Patron arXiv:
1312.2251 COMM. MATH. PHYS.
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Step V ITERATE THE ARGUMENT q times

S(A0
[| ih |]) �

X

j

pjS(A0
[| jih j |])

THE PURELY 
LOSSY 

CHANNEL IS 
MIXING: 

ITERATING IT 
MANY TIMES IT 

BRINGS ALL 
INPUT STATES 

TO THE 
VACUUM ....

S(A0
[| ih |]) � S(A0

[|ØihØ|])
QED* needs to enforce continuity condition (use the mean energy constraint)

* 

X

j

pj | jih j | = [E0
⌘0 ]q(| ih |)

lim
q!1

[E0
⌘0 ]q[| ih |] = |ØihØ|

 Solution
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Quantum state majorization at the output of bosonic Gaussian channels

A. Mari,1, ⇤ V. Giovannetti,1 and A. S. Holevo2

1NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy.
2Steklov Mathematical Institute, 119991 Moscow, Russia.

We show that every output state of a phase insensitive bosonic Gaussian channel is majorized
by the output of the channel applied to an arbitrary coherent state. The proof is based on the
optimality of coherent states for the minimization of strictly concave output functionals. Moreover
we show that coherent states are the unique optimizers.

Bosonic Gaussian channels play a fundamental role
in the field of quantum information and communica-
tion [1–3, 8]. They are defined as completely positive
and trace preserving operations mapping Gaussian input
states into Gaussian output states [3, 5, 6]. The most
relevant channels are also invariant for phase space rota-
tions and are called phase-insensitive. For example, the
transmission of optical quantum states through realistic
physical devices [2] (like e.g. optical fibers, free space
communication lines, dielectric media, etc.) can be de-
scribed by phase-insensitive Gaussian channels.

In the spirit of classical communication theory [7],
one may ask what is the minimum amount of “dis-
order” achievable at the output of a Gaussian chan-
nel. For quantum systems there are two main figures
of merit which can be used to quantify the idea of disor-
der [33–36]: the von Neumann entropy and the concept
of majorization. The entropy of a state ⇢ is defined as
S(⇢) = �Tr[⇢ log(⇢)] and one can say that a state ⇢1 is
more disordered than ⇢2 if S(⇢1) > S(⇢2). A di↵erent
(and stronger) way of saying that ⇢1 is more disordered
than ⇢2 is the following:

kX

j=1

�

⇢1
j


kX

j=1

�

⇢2
j

, 8k � 1, (1)

where the vectors �⇢ consists of the eigenvalues of the re-
spective states arranged in decreasing order. If the con-
dition (1) is satisfied then one says that ⇢2 majorizes ⇢1

and this is usually indicated by the expression ⇢2 � ⇢1.
The previous definition has a very intuitive operational
interpretation since it can be shown that ⇢2 � ⇢1 if and
only if ⇢1 can be obtained from ⇢2 by a proper convex
combination of unitary operations [33–36]. These consid-
erations extend also to the infinite dimensional case, see
e.g. [37] relevant for the quantum description of electro-
magnetic modes.

According to the previous ideas of disorder it was con-
jectured [11] that for a phase-insensitive bosonic Gaus-
sian channel:

(i) the minimum output entropy is achieved
by coherent input states,

and

Input Gaussian channel Output

FIG. 1: Graphical representation of the majorization conjec-
ture (ii). A coherent state |↵ih↵| and an arbitrary state ⇢ are
both transmitted through the same phase-insensitive Gaus-
sian channel �. The respective output states always satisfy
the majorization relation �(|↵ih↵|) � �(⇢). This means that
coherent input states produce less “noise” at the output of
the communication channel.

(ii) the output states resulting from coherent
input states majorize all other output states.

A graphical representation of the last property is given
in Fig. 1.
In the last decade, many analytical and numerical ev-

idences supporting both conjectures were presented [11–
23] but a general proof was missing. Only very recently
the first conjecture was finally proved [9]. In this paper
we prove the second one. Moreover it is easy to show that
⇢2 � ⇢1 implies S(⇢1) � S(⇢2), therefore the statement
(ii) is stronger than (i) and the result presented in this
work can also be seen as a proof of the minimum output
entropy conjecture, without any energy constraint.
As we have previously explained, the majorization

relation is a strong property and implies a plethora
of non-trivial consequences. Indeed the proof of the
conjecture (ii) has a number of important corollaries
ranging from entanglement theory [10, 24–26], channel
capacities [4, 10, 11, 13, 14, 21, 22], entropic inequalities
[15, 17, 21, 22] to quantum discord [27, 28]. In this work
we highlight some of the implications of our result and
we hope to stimulate many other research ideas.

Gaussian channels.– Every quantum channel [3, 29] can
be described as a global unitary operation applied to the
tensor product of the state of the system ⇢

S

and the state
of an appropriate environment ⇢

E

:

�(⇢
S

) = Tr
E

U(⇢
S

⌦ ⇢

E

)U†
. (2)

 Solution



Solution Giovannetti, Holevo, Mari arXiv: 
1405.4066

p⇢(z) = Tr[⇢D(z)⇢0D
†(z)]

PHASE INVARIANT 
GAUSSIAN STATE

Z
f(p⇢(z))

d2sz

⇡s
�

Z
f(p|↵ih↵|(z))

d2sz

⇡s

TAKING                              THIS IS 
THE HUSIMI DISTRIBUTION

⇢0 = |ØihØ|

Lieb and Solovej (2012)
Lieb (1978)

f(x) CONCAVE

a consequence: generalization of the 
Lieb, Solovej  inequality



Solution

⇢(k,N) = Uk(⇢
N
G ⌦ |0ih0|)U†

k

VACUUM



|Øi

⇢NG

EoF (⇢(k,N)) = inf
pj ,| ji

X

j

pjS(Ak(| jih j |)) � S(Ak(|0ih0|)) = EoF (⇢(0, N))

EoF (⇢(k,N))  EoF (⇢(0, N)) = g(k � 1) Giedke, Wolf, Kruger, 
Werner, Cirac PRL 2003

Matsumoto, Shimono, 
Winter, CMP 2004

Giovannetti, Garcia-Patron, Cerf, Holevo
arXiv:1312.6225 Nature Photonics



Solution DePalma, Mari, Giovannetti, arXiv: 
1402.0404 Nature Photonics

Beam 
Splitter

OUTPUT 
SIGNAL

⇢A

⇢B
Smith, Koenig 2012

S(⇢B) = SB

S(⇢A) = SA

Entropy Power Inequality Conjecture 

       Given SA and SB input entropies of the device 
the following inequality holds

PROVED FOR ⌘ = 1/2 IN Smith, Koenig 2012

eSC � eSA + (� 1)eSB

PROOF EXTENDED FOR ALL     ⌘ AND GENERALIZED TO AMPLIFIER CHANNEL TO

eSC � ⌘eSA + (1� ⌘)eSB



scattering
region RY

R1

RK

R2

...

Solution DePalma, Mari, Lloyd,Giovannetti, 
arXiv: 1408.0560 (multimode)
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Conclusions and Perspectives

A BUNCH OF CONJECTURES ON CV SYSTEMS HAVE BEEN RECENTLY SOLVED.

THE STRONGEST OF THEM IS THE MAJORIZATION CONJECTURE, e.g.

  - STRONG CONVERSE FOR GAUSSIAN CHANNELS  
    BARDHAN, GARCIA-PATRON, WILDE, WINTER arXiv:1401.4161 

 - CLASSICAL CAPACITY OF MEMORY GAUSSIAN BOSONIC CHANNELS 
    DEPALMA, MARI, GIOVANNETTI arXiv:1404.1767
 

OPEN QUESTIONS:

i. STILL ON THE CHASE  for the ENTROPY PHOTON NUMBER INEQUALITY CONJECTURE ....

ii. CONTINUITY ....

iii. CAPACITY FORMULAS FOR NON PHASE-INVARIANT CHANNELS

NC � ⌘NA + (1� ⌘)NB

Beam 
Splitter

OUTPUT 
SIGNAL

⇢A

⇢B

photon numbers associated with the 
Guassian state which have

the SAME entropy of the state
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II.  Solutions Mari, Giovannetti, Holevo arXiv:
1312.2251

repeat the same procedure for arbitrary (strictly) concave functionals 
of the output states of the channel ... 

STEPS I, II, III, IV as before ....

IF            MINIMIZE THE FUNCTIONAL SO ALSO                                                                 MUST DO THE SAME.    | i

BUT           IS STRICTLY CONCAVE, HENCE                             MUST BE  PURE. F

THE ONLY STATES WHICH REMAIN PURE UNDER A LOSSY MAP ARE THE COHERENT STATES

Aharanov et al. (1966)
Asboth et al. (2005)
Jiang et al. (2013) QED

F(A0
[| ih |]) = F(A0

 � E0
⌘0 [| ih |]) �

X

j

pjF(A0
[| jih j |])

E0
⌘0(| ih |) =

X

j

pj | jih j |

E0
⌘0 [| ih |]


