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“The trouble with quantum mechanics’
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Quantum superpositions

The Schrodinger equation is
linear

Wave function: |here> + |[there>

(to be normalized)

What does it mean?



Option A: particle

|here> + |there> means that a particle is either here or there; we
are simply ignorant about its precise location. The wave function is
there to reflect our ignorance.

This is the simplest explanation, which eventually leads to Bohmian
Mechanics. But one has to accept two things:

* Quantum Mechanics is incomplete, the wave function is not
everything.

 The wave function cannot simply reflect our ignorance, otherwise
one cannot explain the double slit experiment.



Double slit experiment
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Bohmian Mechanics takes care of all these things.




Option B: wave

|here> + |there> means that
the particle is here and there,
like for any wave.

This is a more challenging
explanation, which eventually
leads to collapse models (|
deliberately ignore Many
Worlds). But one has to accept
two things:

* Particles are not particles, they are not localized. They are waves.

 Upon measurements, particles are always well localized, never
split in two (or more), like waves.



Option C: none

|here> + |there> means that the particle is neither here or there...

In a sense, this is the official solution. Only in a sense...

The official position is the wave function is not about the state of
the particle, but about the outcomes of measurements:

The square modulus of the wave function gives the probability that,
in a position measurement, the particle is found to be here or there



Standard Quantum Mechanics
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The cat...

Quantum world Classical world
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The Problem with Quantum Mechanics

Quantum world Classical world
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The Copenhagen interpretation assumes a mysterious division between the
microscopic world governed by quantum mechanics and a macroscopic world of
apparatus and observers that obeys classical physics. [...] s. weinberg, Phys. Rev. A 85, 062116 (2012)



Solutions



Bohmian Mechanics

The cat is always either here or there.

The wave function is there to guide the cat.



Collapse models

The wave function does describe the state of the system™*.

Microscopic systems are quantum (linearity), macroscopic systems
are not (breakdown of linearity).

This is implemented by modifying the Schrédinger equation. The
new dynamics is nonlinear and describes the quantum micro-

world, the classical macro-world, as well as the transition from one
to the other.
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The GRW model

Systems are described by the wave function. This evolves
according to the Schrodinger equation, except that at random
times (with frequency A) they undergo spontaneous collapses:
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The probability (density) for a collapse to occur around x is given

by || L5 %) 17

=» Collapses are random in space and time

=» Two parameters defining the model: A and r



The jump
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Example: “large” superposition

Jump operator L’
Initial
wavefunction ‘¢>
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Example: “small” superposition
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Amplification mechanism

Initial “2-particle” wavefunction Jump operator

Rigid object: system left + system right on “particle” 2
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However

Initial “2-particle” wavefunction Jump operator

. ] on “particle” 2
Ideal gas: particles are independent
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The jump on one particle did not affect '
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The overall picture

Stable. A too small

systems

370 Microscopic
&

Unstable! NA large and d >> r,

Macroscopic
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Macro superpositions

B BECs, SQUIDs,
| superfluids ...

Hilbert space

Stable. Already localized (d << r¢)

objects

Stable. No cat-like superposition
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Interferometric Experiments

Atom Interferometry
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To improve interferometric tests, it will likely be necessary to go to micro-gravity
environment in outer space. COST Action QTSpace (www.qtspace.eu)



Non-interferometric tests
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Non-interferometric tests

Center of mass motion of a quantum system (either simple or complex)

Quantum Mechanics Collapse models
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A gas will expand (heat Charged particles will A cantilever’s motion
up) faster than what emit radiation, whereas cannot be cooled down
predicted by QM QM predicts no emission below a given limit

S(w)




Non - Interferometric Experiments

Cold atom gas

F. Laloé et al. Phys. Rev. A 90, 052119 (2014)
T. Kovachy et al., Phys. Rev. Lett. 114, 143004 (2015)
M. Bilardello et al., Physica A 462, 764 (2016)
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Non - Interferometric Experiments

X rays TR

S.L. Adler et al., Jour. Phys. A 40, 13395 (2009) 10-18
S.L. Adler et al., Journ. Phys. A 46, 245304 (2013)

A. Bassi & S. Donadi, Annals of Phys. 340, 70 (2014)

S. Donadi & A. Bassi, Jounr. Phys. A 48, 035305 (2015)
C. Curceanu et al., J. Adv. Phys. 4, 263 (2015)
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Non - Interferometric Experiments

Lisa Pathfinder

M. Carlesso et al. Phys. Rev. D 94, 124036 (2016)
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Non - Interferometric Experiments
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Non - Interferometric Experiments
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Non - Interferometric Experiments
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