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Computers
Antikythera mechanism Robotron Z 9001
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Analogue computer Digital computer: 0 & 1



Quantum computers: Why?

Computational complexity
Problems that can be solved in:
-polynomial time (easy)
-exponential time (hard)
as a function of input size.

Classical computers:
P.  polynomially easy to solve

NP: polynomially easy to verify solution

BQP: polynomially easy to solve with QC



Quantum computers: Why?

*  Factoring
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quantum hackers exponentially better than
classical hackers!

+ Searching objects: where is #?
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» Errors during QC are too catastrophic.



Topological quantum computers: Why?

Topology promises to solve the
problem of errors that inhibit
the experimental realisation of
quantum computers...

..and it is a lot of fun :-)



Geometry - Topology
Geometry
- Local properties of object
Topology
- Global properties of object




Topology of knots and links

Are two knots equivalent?

*Algorithms exist from the '60s
‘Extremely ftime consuming...
«Common problem (speech recognition, ...)

*Mathematically Jones polynomials can recognise
if two knots are inequivalent.



Topological quantum effects

Aharonov-Bohm effect
Magnetic flux ® and charge ¢
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Particle statistics

Exchange two identical particles:

X1©x2

Statistical symmetry:
Physics stays the same, but |¥) could change!
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Anyons and statistics
Bosons V) —| W)
3D
Fermions |W)—¢™"|W)
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Anyons

Anyons: vortices with flux & charge (fractional).
Aharonov-Bohm effect < Berry Phase.




Anyons and physical systems

2D |1P>%ei2¢ lP>
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Anyonic properties can be found in 2-dimensional
topological physical systems:

. [G. Palumbo & JKP,
. "C-S from lattice",

PRL 2013]




Anyons, statistics and knots

N Initiate: Pair creation of anyons

.

Measure: do they fuse to the vacuum?

time
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Anyons, statistics and knots
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Anyons and knots

Assume I can generate anyons in the laboratory.

+ The state of anyons is efficiently /\
described by their world lines.

» Creation, braiding, fusion. \
VA

» The final quantum state of
anyons is invariant under JQ < § /J
continuous deformations of K\/ é

strands.




The Reidemeister moves

Theorem: /Q—» /_\ (I)

Two knots can be

deformed continuously N

one into the other iff /<_’ > < (1D)
one knot can be

transformed into the

other by local moves: 7 p /-\\
\ i (111)
N\ v
N~~— \



Skein relations




Skein and Reidemeister

Reidemeister move (II) is satisfied. Similarly (III).



Kauffman bracket

The Skein relations give rise to \/ Vv 1‘ ‘

the Kauffman bracket: AL
) 1V+ .......
Ske'"@ﬁ LIA) \_"\H

(CO)-HOp(OO)aesr
(@)(Q)+(O-ser--cn

o ece >



Jones polynomial

The Skein relations give rise to
the Kauffman bracket:

Skein( @):@XA)

To satisfy move (I) one needs to define

Jones polynomial:
V. (A) = (A" (L)(A)

w(L) is the writhe of link. For an oriented link it is
the sum of the signs for all crossings

/\/: +1 \/\: -1



Jones polynomial

The Skein relations give rise to NG V*l‘ ‘
the Kauffman bracjl‘<e‘r: T IREARY
Koi (N A e
S em(@)< )(A) \/\—’%X'A

To satisfy move (I) one needs to defin

Jones polynomial:
V,(A) = (=A™ (L)(A)

/Q: A/Q+/11A :(dA+%)/.\:—A3 /\

w=-1



Jones polynomial

If two links have different Jones polynomials
then they are inequivalent

=> use it to distinguish links
Jones polynomials keep:

only topological information, no geometrical



Jones polynomial from anyons
Braiding evolutions of anyonic states:

anyons
*Translate it to circuit model:
<=> find trace of matrices

«Simulate the knot with braiding \/



Jones polynomial from QC

Evaluating Jones polynomials is a #P-hard
problem.

Belongs to BQP class.

With quantum computers it is polynomially easy
to approximate with additive error.

[Freedman, Kitaev, Larsen, Wang (2002);
Aharonov, Jones, Landau (2005);
Kauffman, Glaser et al. (2009);
Kuperberg (2009)]



Summary

TO BEAT BACTERIA, STOP MUTATIONS * GLOBALIZATION AND POVERTY
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Inception of Anyonic Models

1. Take a certain number of different anyons
1,a,b,..
the vacuum (1) and one or more non-trivial
particles

2. Define fusion rules between them
I1xa=a, axb=c+d+..., axa=1+...
The vacuum acts trivially. Each particle has an
anti-particle (might be itself or not).

- Abelian anyons axb=c
- Non-Abelian anyons axb=c+d+...



Braiding and Fusion properties

» The action of braiding of two anyons depends on
their fusion outcome:

Re , is a phase factor ? \/
_Rc

» Changing the order of fusion is non-trivial:
a b ¢ a b ¢




The braid group B
The braid group Bn has elements b1, b2, ..., bn-1

that satisfy: bb,=b.b, for|i-j|=2

bb. b =b._ bb. . forl<si<n

Pictorially: N N
I [
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Inception of Anyonic Models

3. The F and B matrices are determined from the
Pentagon and Hexagon identities
1 2 3 4

2 3 4 2 3
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Inception of Anyonic Models

3. The F and B matrices are determined from the
Pentagon and Hexagon iden’ri’ries

1 1
R;,
\Y (Fég) 31)b ZV/
V< Y

F;S)

Z(inl)lei(E;) _R 13) R



Ising Anyons

Consider the particles: 1, c and y

Fusion rules: oxo=1+y, yxy=1, oxy=0

c O O 0 O© o O
S I I I I O
o 1 o 1 o Do 1 do=2
v o v 0 . d4=4
: o de=8
LG o ds=16

d,=2"2 increase in dim of Hilbert space



Ising Anyons
Consider the particles: 1, c and y

Fusion rules: oxo=1+y, yxy=1, oxy=0

O 0 0 0 O o O
S I O
s 1 o S oc
S All these states span the
W)y =1,1,.) fusion Hilbert space.
V)=1ly..) Braiding neighboring

anyons transforms states



Ising Anyons

Consider the particles: 1, c and y
Fusion rules: oxo=1+y, yxy=1, oxy=0

From 5-gon and 6-gon identities we have:
o _L[1]
aaa_\/i 1 -1 —
O 0O O

Rotation of basis states p/ \/ I \q
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Ising Anyons

4N o1
Braiding R,, =" and R? =ie""*'=> R = e‘”’/g(o
f1 ] 01 0, 01 0, ©
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Gs hon-universal!



Ising Anyons

O 0O O O 0O O
Qubit initialization: | \1/ \)w/
(0} (0}

State |0> State |1>

Measurement: Outcome of pairwise fusion, 1 or y
Ho H =0"

Gates: Clifford group. Non-universal!

One needs a phase gate: employ interactions

between anyons.

Can be employed as a quantum memory.



Ising Anyons

* Assume we can:
- Create identifiable anyons
vacuum pair creation

- Braid anyons
Statistical evolution:
braid representation B

- Fuse anyons
oxo=1+y
Fusion Hilbert space:

0,0—1),

0,0 =)

AV
.

a2
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Fibonacci Anyons

Consider anyons with labels 1 or T with the fusion
properties: 1x1=1, 1xt = 1, ™7 =1+7

T T T T T T T
S O O S B
T 11 1 7 Dimension of
- r 1 v 1 Hilbert space
1: T T T n
d2:2 1 1 ® dn > ¢
d,=5 Fibonacci T 9= )
ds=8 sequencel 1
X



Fibonacci Anyons and QC

Qubit encoding: Evolvmg a QLIbIT
TT T
‘ \/ > ? -Re,, \/
1
J
State |0> S’ra’re |1>T
T,T—1)=|0) i
T,T—T1)=|1)

Unitaries B and F are dense in SU(2).
[Freedman, Larsen, Wang, CMP 228, 177 (2002)]



Fibonacci Anyons and QC

Qubit encoding: Evolving a qubit:
a b a b
N
///// :RC
T T(T TT T ab
| T T T T T
T T {

Unitaries B and F are dense in SU(2).
Extends to SU(dn) when n anyons are employed.



Fubonaccu Anyons and QC

CNOT

Unitaries B and F are dense in SU(2).
Extends to SU(dn) when n anyons are employed.



- Is it worth it?

Conclusions

» Topological Quantum Computation promises to
overcome the problem of decoherence and
errors in the most direct way.

* There is lots of work to be done to make anyons
work for us.

Aesthetics says YES! @



