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Anyons and Quantum Computation

*Error correction needs a huge overhead.

‘Instead of performing active error correction let
physics do the job.

*Perform QC in a physical medium that is gapped
and highly correlated:

‘Energy penalty for errors (gapped).
‘Make logical errors non-local (very unlikely).

*Similar to quantum error correction, but without
active control.



Toric Code: ECC

: 2"
Consider the lattice Hamiltonian 1
TP P «+ P |
H = _EIZpIZpZZp3Zp4| — EXVIszXV3XV4 ‘
p v |
Spins on the edges. 1 o Ixi p
Xe | X
Two different types of
interactions: ZZZZ or XXXX | xs p | p f
acting on plaquettes and vertices . - £

respectively.

The four spin interactions involve
spins of the same vertex/plaquette.



Toric Code: ECC

Consider the lattice Hamiltonian
T p | P
H = _EZpIZpZZp3Zp4 — EXVIszXV3XV4 ‘
> = 1 —
Good quantum numbers:
T »p } p
(H,Z,7,,Z,,7,,]=0 \
Al X
[H9Xv1Xv2Xv3Xv4] - O
|
(leXv2Xv3Xv4)2 = 1 ’
(ZpIZp2Zp3Zp4)2 = 1 ’

—eigenvalues of XXXX and ZZZZ: +1
Also Hamiltonian exactly solvable:

[ X1 X p X 3 X, ZpIZpZZp3Zp4] =0



Toric Code: ECC

Consider the lattice Hamiltonian
T p | P < P
H = _EZpIZpZZp3Zp4 — EXVIszXV3XV4
P 14

A -}- — - 4 A

Indeed, the ground state is: I »p V p Y p <
1 ——

|€) = Hﬁ I+X,X,X,X,,)00..0) O R

. .

The |00...0> state is a ground state of the ZZZZ term.

The (T+XXXX) term projects that state to the ground
state of the XXXX term.



Toric Code: ECC

Consider the lattice Hamiltonian

T B ——t 1
X X
H = _EZpIZpZZp3Zp4 — EXVIszXV3XV4
> 7 ﬁ -- — At Y
X X
Indeed, the ground state is: f 1 “T
" e <1
‘§> = Hﬁa + XVIXV2XV3Xv4) OOO> 1 D L 5 Xﬂ l V

The ground state is a superposition of all X loops.
It is stabilized by the application of all X loop operators.

Equivalently for Z loops.



Toric Code: ECC

» Excitations are produced by
Z or X rotations of one spin.

T p | P < P

+ These rotations anticommute
with the X-or Z-partof the | » | ® Y} P T

Hamiltonian, respectively. " SV B PR
+ Z excitations on v vertices. 1 » | @ 1 » f
+ X excitations on p plaquettes. \ . 1

X and Z excitations behave as anyons
with respect to each other.



Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

First create excitations e
with Z and X rotations. 1

T p | P < P




Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

T p | P < P

V4
First create excitations +—@ A A
with Z and X rotations. {1 » | @ { » 4
Then rotate Z excitation around
the X one. e




Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

T p | P < P

. . . Z Z
First create excitations —r—%+
with Z and X rotations. 1 -zl @ | » <
Then rotate Z excitation around
the X one. —@F—1——




Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

T p | P < P

. . . Z Z
First create excitations —r—%+
with Z and X rotations. 1 ozl e | A
Then rotate Z excitation around
the X one. > Hﬂ_‘ —Y




Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

T p | P < P

V4
First create excitations — = o—
with Z and X ro’raTolons. 1 oz @ 1zr»
Then rotate Z excitation around

the X one. > Hﬁld‘ —




Toric Code: ECC

] N
One can demonstrate the anyonic *
statistics between X and Z. ° T ; *
First create excitations A—t—@—
with Z and X rotations. {1 - | @ { » 4
Then rotate Z excitation around
the X one. —
This results in plaquette 1 » | @ | » }
operator detecting the X
excitation. Gives -1 X - f

|Final) = Z,2.7,Z,|X) = (2,Z,Z,Z))X,|E)
= -X,(Z2,2,2,Z,)|E) = -|Initial)



Toric Code: ECC

|Final) = 2,2.7,2,|X) =(Z,Z,Z,Z))X,|E)
=-X,(2,2,2,Z)|&) Qnitial)

Anyonic statistics

After a complete rotation of an X anyon around a Z
anyon (two successive exchanges) the resulting state
gets a phase /T (a minus sign): hence ANYONS with

statistical angle 77 /2
A property we used is that X4X3X2Xl‘ §> = ‘§>



Toric Code: ECC

One can demonstrate the anyonic
statistics between X and Z.

First create excitations )
with Z and X rotations. 1

Then rotate Z excitation around
the X one. > —
This results in plaquette 1 o | 1 o»

operator detecting the X
excitation. Gives -1 <

T p | p < P

‘Final> = X4X3X2X1‘Z> - (X4X3X2X1)Z3‘§>
~ Z, (X, X, X, X))|E) = | Initial



Toric Code: Anyons

Hence Toric Code has particles: <+ p | p < p |}

e

1,e (Z), m (X), e(fermion) —t——
Fusion rules: 1 » } ® Y P T
. A |- £ y

exe=1 mxm=1exe=1

eExXm=¢g,exe=m mxe=e

Fusion moves: F are trivial

Braiding moves R:  R: =i Rl =-1



Toric Code: Encoding
>>

Toric code as a quantum error 2
correcting code. + p  p 4 p |

Consider periodic boundary
conditions: TORUS of size L 0

Errors: Anyons

Error correction: detect
anyons/errors and connect

shortest distance between the
same type of anyons.

anle2Xv3Xv4 = anIZp2Zp3Zp4 = 1
1% P




Toric Code: Encodmg

Toric code as a quantum error
correcting code.

Consider periodic boundary
conditions: TORUS of size L

Errors: Anyons

Error correction: detect
anyons/errors and connect

shortest distance between the
same type of anyons.

Logical Gates: non-trivial loops




Toric Code: Encoding
*>

Logical Space and Gates

W)

‘P2> = C;( qj1>

‘P3> n C)2( \P1>

]P4>=C)2(C}(‘IP1>

Can store two qubits and
perform Clifford group

operations!
Higher genus, g, stores 2g >
qubits. )




Quantum Double Models

Toric Code is an example of quantum double models.
Corresponding group Z, ={1,e;e?=1} that gives rise to qubit
states |1>,|e>.

Imagine a general finite group G={qg;, 9, ....94} and the
corresponding qudit with states |g>, i=1,...,d.

Consider a qudit positioned “T°T17 1 1
at each edge of a square T 17 1 1 1 1
lattice. * * 1 .

R . . ® lx ® 13 p 11 ®
Define orientation on the s 22 | 12 .
lattice: |4 | | | |
Upwar'ds and RighTWGI"dS ° ° ° ® °




Quantum Double Models

ry ¥
Define operators: - o
| T+h |
El2)-lg) 2l)=|z) T])-0.02 T2)-0,. |2

A(v) = é gZGL‘i’ (e)Li(e,)LZ(e5) L2 (ey), B(p)= : Z{ " ()T ()T ()T (ey)

Hamiltonian and ground state: — o
H=—EA(V)—EB(p) _+_4_ -l .
¢ ) 1 ) % Iz;éy 11 ¢

AW &) =|E) 1t
B(p)|£) =) —




Quantum Double Models

This is also an error correcting code defined from the
stabilizer formalism.

The errors are anyons, Abelian or non-Abelian, with the
corresponding fusion rules, B and F matrices.

These properties can be T
explicitly determined. | R R D S R |
@ @ @ >-o L
4
L 4 1 ® 3 p 1 ®
Examples: D(Z,), D(Z,xZ,), 4, L_g $I>% ! .
D(S3) ® 3t [ ® [ [

53:{1,X,y’y2’XY,Xy2; x2:1'y3:1} ® o PS PA °



Quantum Double Models

This is also an error correcting code defined from the
stabilizer formalism.

The errors are anyons, Abelian or non-Abelian, with the
corresponding fusion rules, B and F matrices.

Information can be encoded . . .
in the fusion space of

non-Abelian anyons and (e 3’;19 ]
manipulated by braiding them. | 4, 7,2 ‘}IJ 1 .

Realizations: S
Josephson junctions, photons, optical lattices,...




From Abelion to Nonabelion

itoni
+ The scheme: D(Z,xZ,) [or D(S;3)] biI: ;,r:'e;oe"\'l?gw:
similar to two toric codes

Empty Q
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ammm Te  egms
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i
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Upper
g only
1 X
Vacuum Abelian "Non-Abelian” U d
Anyon Anyon Pl G .
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- Encode information in fusion

From Abelion to Nonabelion

channels:
Uxp=1, XxX=1+1
* Qubit needs four anyons

- Logical |0> when each pair
fuses to the vacuum 1

+ Logical |1> when each pair
fuses to y

- 1, pindistinguishable to local
operations when dressed with x

* Measurement by fusion




From Abelion to Nonabelion

- Fault-tolerance

- Phase flips . :+I I+I I+? I |0>
- Bit flips ® ®

by non-local | rg™

operators only I I i I I " I: U II 1>

—> topo. protection | = ¥ I|%

Energy gap present even
during gate operations

» Redundancy and non-locality

protects against virtual
A IAE transitions

* Braiding is only Abelian.




Summary

* Quantum Double models:

- Toric Code

- Abelian encoding and quantum computation
- Non-Abelian models

- Degenerate encoding states
» Energy gap above encoding space

* Manipulations of code space: higher genus
surface or with anyons or punctures: encoding
Hilbert space becomes larger.




Further

Detecting topological order
* Topological entropy

* Errors and topological order

-Topological memories

‘Protection against errors



Topological Entropy
- Pure system |[&)

+ Partition in R and R with boundary 9R
* Reduced density matrix of R:

P = Tre| E)(E]
* Von Neumann entropy:

Sy =tr(pg In pp)
+ We expect: 0

[SR =aIaRI+y]+8}aR’IJ)

» Topological entropy: y=InD, D= \/E a’q2
| q




Topological Entropy

+ Consider partition of single system :

D | System is gapped ->
’Q finite correlation length
0 Size of areas -> infinity

eldRT)—0

2

» Topological entropy [Kitaev & Preskill]:
y=98,+05+5:-S5,5=0,4c=Osc+S5 5

The area terms disappear!  S; = |dR | +y



Topological Entropy

» Consider four different partitions:

2 2 2 2

A B C D

S 4 Sp S¢ Sp
» Topological entropy:

r== 18, -5 -(5c-5,)

* Only loop contributions survivel [Levin & Wen]



Topological Errors

Errors can appear in the form of virtual anyons:

O O O O O O O O
/ Lsae

W1



Topological Errors

Errors can appear in the
form of virtual anyons

They can be avoided by
keeping data anyons far
apart:

P ~ ALV

error e

/
\
O O

O'
>

7 AN

L

A :Energy Gap for o pair cration

L :distance between o anyons

v:characteristic velocity of anyons



Resilience to Errors

» Abandon the idea of separate subsystems for
qubits. Encode info in macroscopic degree of
freedom (non-locally).

Direct observation of anyons does not reveal
their total state.

=> local decoherence (environment "measures”)
does not destroy information.

* The unitary transformations resulting from
braiding are virtually errorless.



Resilience to Errors

* Hamiltonian (energy gap) protects against local
per"rurba‘rlonq

+ Error corpd |1 r‘"*<: i against environmentally
induced e/' uﬂ ' /
i | | | > — o

QEC~0.01%

==

Gapped TQEC TQEC~0.75%
>>0.75%?72?

Topo Deg
gap protection

Topologically inspired quantum error correction.
0.75% tolerance [Raussendorf & Harrington]



Topological Memory

Can you create a 2D system that resists errors
due to temperature for long times?

1) Toric code coupled to bosonic field:

errors (anyons) attract and annihilatel
[Hamma, Castelnovo & Chamon]

2) Induce a repulsion between anyons:

it generates a stable anyonic phase.
[Chesi, Roethlisberger & Loss]

3) Entropic energy barriers
[Brown, Al-Shimary, JKP]



Outlook

» Quantum information has a lot to offer to the
study of topological systems.

+ Topological quantum computation is a very
promising way of storing and manipulating
quantum information.

* Research on topological quantum computation has
applications to many relevant fields of
condensed matter, statistical physics, biology,...

» Topological states of matter NEED mathematics
to be understood.



