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• Markovianity and Non-Markovianity!

• Measuring the degree of non-Markovianity Breuer, Laine 
and Pillo measure!

      - Breuer, Laine and Pillo measure!                               

!   !! ! ! - Rivas, Huega and Plenio measure                

• Non-Markovianity through accessible information.!

! ! ! - Theory !

! ! ! - Experiment
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Time-local master 
equation

• time-dependent Markovian process iff 
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Environment correlation time

•Backflow of information !
•Divisibility of the dynamical map!
•Non-monotonical behavior of entanglement!
•Non-monotonical behavior of mutual information

Non-Markovian process

Breuer, Laine, and Piilo - PRL 103, 210401 (2009).



7

Backflow of information

Breuer, Laine, and Piilo - PRL 103, 210401 (2009).

Trace distance:

In a non-Markovian process the distinguishability between the system 
density matrix increase for some instant of time. 

During a Markovian process the distinguishability of the system density 
matrix always reduce.

D12(t) =
1

2
Tr{⇢1(t)� ⇢2(t)}

d

dt
D12(t) > 0
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Backflow of information

Breuer, Laine, and Piilo - PRL 103, 210401 (2009).

NBLP (⇤) = max

⇢1(0),⇢2(0)

Z

(dD12(t)/dt)>0

d

dt
D12(t)dt

Measure of non-Markovianity

maximum taken!
over all pairs of initial states
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Backflow of information

Breuer, Laine, and Piilo - PRL 103, 210401 (2009).

NBLP (⇤) = max

⇢1(0),⇢2(0)
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d

dt
D12(t)dt

Measure of non-Markovianity

maximum taken!
over all pairs of initial states

Information ?



Since the entanglement shared by s and a
local operations, any entanglement measure has to monotonously 
decrease for all divisible processes.

Non-monotonical behavior 
of Entanglement

A quantum state in a Hilbert space      
An arbitrary ancilla system in is introduced:

Rivas, Huelga, and Plenio – PRL  105, 050403  (2010).

⇤(t)

H

Ha ⇢sa 2 H ⌦Ha

⇢sa(t) = (⇤(t)⌦ I)⇢saQuantum process         :

E(⇢sa(t)) decays monotonically: Markovian

dtE(⇢sa(t)) > 0 Non-Markovian

⇤t2,0 = ⇤t2,t1⇤t1,0
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L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001)
Classical Correlation
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Accessible Information

J SE = S(⇢S)� ESAM. Koashi and A. Winter, PRA 69, 022309 (2004)!
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Conservation law for distributed entanglement of formation and quantum discord
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We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF)
and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending
it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF
and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum
computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that
quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations
are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the
balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.

DOI: 10.1103/PhysRevA.84.012313 PACS number(s): 03.67.Mn, 03.67.Ac

I. INTRODUCTION

Quantum discord (QD) is a measure of quantum correlation
defined by Ollivier and Zurek almost ten years ago [1] and,
yet, a subject of increasing interest today [2]. It is well known
that, for a bipartite pure state, the definition of QD coincides
with that of the entanglement of formation (EOF). But it
has remained an open question how those two quantities are
related for general mixed states. Here, we present this desired
relation for arbitrarily mixed states and show that the EOF
and the QD obey a monogamic relation. Surprisingly, this
necessarily requires an extension of the bipartite mixed system
to its tripartite purified version. Nonetheless, we obtain a
conservation relation for the distribution of EOF and QD in the
system—the sum of all possible bipartite entanglement shared
with a particular subsystem, as given by the EOF, cannot be
increased without increasing, by the same amount, the sum of
all QD shared with this same subsystem. When extended to
the case of a tripartite mixed state, this relation results in an
alternative proof for the strong subadditivity of entropy, with
stronger bounds depending on the balance between the sum of
EOF and the sum of QD shared with a particular subsystem.

As an example of the importance of this conservation
relation, we explore the distribution of entanglement in
deterministic quantum computation with one single pure qubit
and a collection of N mixed states (DQC1). The algorithm,
developed by Knill and Laflamme [3], is able to perform
exponentially faster computation of important tasks [4,5] when
compared with well-known classical algorithms, without any
entanglement between the pure qubit and the mixed ones [4].
Arguably, the power of the quantum computer is supposed to
be related to QD, rather than entanglement [6]. Here, using
the conservation relation, we have shown that even in the
supposedly entanglement-free quantum computation there is
a certain amount of multipartite entanglement between the
qubits and the environment, which is responsible for the
nonzero QD (see Fig. 1).

*fanchini@iceb.ufop.br

II. CONSERVATION RELATION

Let us first consider an arbitrary system represented by
a density matrix ρABE with A and B representing two
subsystems and E representing the environment. It is important
to emphasize that the environment, here, is constituted by
the universe minus the subsystems A and B, since, in this
case, ρABE is a pure density matrix. There is an important
monogamic relation between the entanglement of formation
[7] and the classical correlation (CC) [8] between the two
subsystems developed by Koashi and Winter [9], which we
employ to understand the distribution of entanglement. It is
given by

EAB + J←
AE = SA, (1)

where EAB ≡ E(ρAB) is the EOF between A and B, J←
AE ≡

J←(ρAE) is the CC between A and E, and SA ≡ S(ρA) is the
usual Shannon entropy [10] of A. Further, ρAB = TrE{ρABE}
and analogously for ρAE and ρA. Explicitly, the CC reads
J←

AE = max{"E
x }[S(ρA) −

∑
x pxS(ρx

A)], where the maximum
is taken over all positive-operator-valued measurements {"E

x }
performed on subsystem E, with probability of x as an out-
come, px = TrA{"E

x ρAE"E
x }, and ρx

A = TrE{"E
x ρAE"E

x }/px .
One can easily understand Eq. (1). The entropy S(ρA) measures
the amount of correlation (classical and/or quantum) between
A and the external world. If we divide the external world into
two parts B and E, the amount of quantum correlation between
A and B, plus the amount of classical correlation between A
and the complementary part E, must be equal to SA. In this
sense, Eq. (1) poses constraints on the ability that system A
has to share correlations with other systems. For this reason it
is called a monogamous relation.

We can show a different aspect of Eq. (1) by adding to
both of its sides the mutual information between A and E,
IAE = SA + SE − SAE . After some manipulation we obtain

EAB = δ←
AE + SA|E, (2)

where SA|E = SAE − SE is the conditional entropy and δ←
AE =

IAE − J←
AE is the QD between subsystem A and the en-

vironment E. Equation (2) tells us that the entanglement
between two arbitrary subsystems A and B is related to the

012313-11050-2947/2011/84(1)/012313(4) ©2011 American Physical Society

Entanglement Irreversibility from Quantum Discord and Quantum Deficit
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We relate the problem of irreversibility of entanglement with the recently defined measures of quantum

correlation—quantum discord and one-way quantum deficit. We show that the entanglement of formation

is always strictly larger than the coherent information and the entanglement cost is also larger in most

cases. We prove irreversibility of entanglement under local operations and classical communication for a

family of entangled states. This family is a generalization of the maximally correlated states for which we

also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the

distillable secret key, and the quantum discord.

DOI: 10.1103/PhysRevLett.107.020502 PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Yz

Two complementary and among the most important
tasks in quantum information theory (QIT) are entangle-
ment dilution and entanglement distillation [1,2]. These
tasks are performed in a scenario where two spatially
separated observers, usually called Alice and Bob, share
some quantum states and are able to manipulate their
respective parties through local operations and classical
communication (LOCC) [2]. In the first task, Alice and
Bob share a large number of copies of a standard pure
maximally entangled state,

j!i ¼ 1ffiffiffi
2

p ðj00iþ j11iÞ; (1)

which is associated with a unit of entanglement called
e-bit. Their task is to construct many copies of an arbitrary,
generally mixed, state ! from many copies of j!i using
only LOCC (see Fig. 1). In the second task, Alice and
Bob want to perform the reverse operation, i.e., to extract
from many copies of an arbitrary state, generally mixed,
the maximal possible amount of e-bits using only LOCC.
Those tasks naturally raise the two most important mea-
sures of entanglement-entanglement cost (EC) and distil-
lable entanglement (ED) [2]. For a given state !ab, E

Cð!abÞ
is the optimal rate for converting a large number of e-bits
into a large number of copies of the mixed state !ab under
LOCC by Alice and Bob. Similarly EDð!abÞ is the optimal
rate for converting a large number of !ab into e-bits under
LOCC [3].

When Alice and Bob can build a large number of copies
of an arbitrary state !ab and can get the same amount
of e-bits back through LOCC, it is said that there is
entanglement reversibility. Conversely, the entanglement
is said irreversible. To understand the aspects leading to
entanglement irreversibility is one of the most important
open problems in QIT [2] with practical implications.
Particularly, entanglement dilution is connected to the
problem of classical communication over a noise quantum
channel [4] and entanglement distillation is connected to

quantum communication and quantum key distribution
[3,5–7] for secure cryptography. It is known that the task
of building an entangled state and extracting back the
e-bits is reversible if Alice and Bob are limited to build
and to distill pure entangled states [1]. For a pure state ’,
EC and ED are equal to the von Neumann entropy Sð!rÞ of
the reduced density matrix !r of one of the subsystems.
Moreover, it is a long-standing conjecture that the only
states with EC ¼ ED are pure states and the so-called
pseudopure (PP) [3,8] states,

!PP ¼
X

pij’i
abih’i

abj % jfiihfij; (2)

where jfii is an ancilla, locally accessible for Alice or Bob,
working as a flag that indicates which pure entangled state
j’i

abi is in the mixture. Although widely believed, there are
few concrete evidences for this conjecture. To understand
irreversibility for mixed states has revealed itself to be a
very difficult question and the first examples were given
only some years later in Refs. [9–12]. Particularly, in
Ref. [12] it is shown that one can find mixed states that
consume entanglement to be created but no entanglement
can be extracted from it, the so-called bound entanglement.

FIG. 1 (color online). Entanglement dilution-distillation cycle.
The entanglement loss is given by ". In the case of reversible
entanglement, " vanishes. In the irreversible case of Eqs. (8) and
(9), " is the regularized quantum discord.
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Abstract. Quantum discord (QD) measures the fraction of the pairwise mutual
information that is locally inaccessible in a multipartite system. Fundamental
aspects related to two important measures in quantum information theory,
namely the entanglement of formation (EOF) and the conditional entropy, can
be understood in terms of the distribution of this form of local inaccessible
information (LII). As such, the EOF for an arbitrarily mixed bipartite system
AB can be related to the gain or loss of LII due to the extra knowledge that
a purifying ancillary system E has on the pair AB. Similarly, a clear meaning
of the negativity of the conditional entropy for AB is given. We employ these
relations to elucidate important and yet not well-understood quantum features,
such as the bipartite entanglement sudden death and the distinction between EOF
and QD for quantifying quantum correlation. For that we introduce the concept
of LII flow that quantifies the LII shared in a multipartite system when sequential
local measurements are carried out.
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Campinas, São Paulo, Brazil
3Institute for Quantum Information Science, University of Calgary, Alberta, Canada T2N 1N4
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Unlike correlation of classical systems, entanglement of quantum systems cannot be distributed at will: if one
system A is maximally entangled with another system B, it cannot be entangled at all with a third system C. This
concept, known as the monogamy of entanglement, is manifest when the entanglement of A with a pair BC can be
divided as contributions of the entanglement between A and B and A and C, plus a term τABC involving genuine
tripartite entanglement and so expected to be always positive. A very important measure in quantum information
theory, the entanglement of formation (EOF), fails to satisfy this last requirement. Here we present the reasons
for that and show a set of conditions that an arbitrary pure tripartite state must satisfy for the EOF to become a
monogamous measure, i.e., for τABC ! 0. The relation derived is connected to the discrepancy between quantum
and classical correlations, τABC being negative whenever the quantum correlation prevails over the classical one.
This result is employed to elucidate features of the distribution of entanglement during a dynamical evolution.
It also helps to relate all monogamous instances of the EOF to the squashed sntanglement, an entanglement
measure that is always monogamous.

DOI: 10.1103/PhysRevA.87.032317 PACS number(s): 03.67.Mn, 03.65.Ud

I. INTRODUCTION

The concept of the monogamy of an entanglement measure
E asserts that, in a tripartite A, B, and C system, the
entanglement of A with BC can be divided as EA|BC = EA|B +
EA|C + τABC , where EA|i , i = B,C, is a bipartite entanglement
and τABC is a genuine tripartite entanglement. In that sense,
unlike correlation in classical systems, for entanglement there
is a trade-off between the amount of bipartite entanglement
A can share with B and C. In 2000, Coffman, Kundu, and
Wootters (CKW) [1] derived a monogamous relation for
the squared concurrence and defined the genuine tripartite
entanglement as the tangle (hereafter called the concur-
rence tangle) [1], τABC = C2

A(BC) − C2
AB − C2

AC , where C2
ij is

the square of the concurrence between the pair i and j . The
concurrence tangle is always positive for a three-qubit system
[1] and for multiqubit systems [2]. However, it is known that
a similar analysis made with the entanglement of formation
(EOF) would give a tangle that can be positive or negative
(hereafter we call this tangle the EOF tangle). Although there
are some instances in which the EOF could be distributed in
a monogamous fashion, it is known that it is not, in general, a
necessarily monogamous entanglement measure (see a more
complete discussion in Refs. [3–5]). This is puzzling, since
the EOF satisfies many of the axioms required for a good
entanglement measure and, further, has a clear operational
meaning [6]. So why is the EOF tangle negative or positive?

In fact it is now known that entanglement is not the only
form of quantum correlation, since there are instances where
a state that is separable (not entangled) still possesses a sort

*fanchini@fc.unesp.br
†marcos@ifi.unicamp.br

of correlation which, in principle, could be used to perform
certain tasks more efficiently than with classical correlation
only. It is not surprising though that both forms of quantum
correlation can be related to each other through extended
system [7] distribution formulas. For example, it is possible to
describe a conservation relation [8] for distribution of the EOF
and quantum discord (QD), a measure of quantum correlation;
for an arbitrary tripartite pure system, the sum of the QD of a
chosen partition, given measurements on the complementary
partitions, must be equal to the sum of the pairwise EOF
between the chosen partition and the complementary ones.
Surprisingly, the sum of the pairwise EOFs appears in a
fashion quite similar to the desired expression for the so-called
monogamy of entanglement, and the relation obtained can
be connected to the way that classical correlations [9,10] are
distributed [11–13].

Until a few years ago, the conjecture that the classical
correlation would always be greater than the quantum cor-
relation for any quantum state was broadly accepted [9,10]. In
2009, Maziero et al. [14] presented the first counterexample
to this conjecture, while studying the dissipative dynamics
for two qubits. Despite their findings, the balance between
classical and quantum correlation has not been connected to
any quantum measure or protocol. In this paper, we show
necessary and sufficient conditions for the monogamy of the
EOF to be established with the help of a general quantum
correlation measure, the QD, and identify the EOF tangle for
an arbitrary tripartite state as the difference between classical
and quantum correlations. We show that the balance between
classical and quantum correlation is crucial to understand this
important open problem. For that we develop an operational
interpretation of the EOF tangle as a measure of the imbalance
of the quantum and the classical correlations, here called the
correlation discrepancy. In fact, very recently, Giorgi showed

032317-11050-2947/2013/87(3)/032317(6) ©2013 American Physical Society
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We use the classical correlation between a quantum system being measured and its measurement

apparatus to analyze the amount of information being retrieved in a quantum measurement process.

Accounting for decoherence of the apparatus, we show that these correlations may have a sudden

transition from a decay regime to a constant level. This transition characterizes a nonasymptotic

emergence of the pointer basis, while the system apparatus can still be quantum correlated. We provide

a formalization of the concept of emergence of a pointer basis in an apparatus subject to decoherence.

This contrast of the pointer basis emergence to the quantum to classical transition is demonstrated in an

experiment with polarization entangled photon pairs.
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The measurement problem is at the core of fundamental
questions of quantum physics and the quantum-classical
boundary [1]. One way to approach the classical limit is
through the process of decoherence [2], where a quantum
measurement apparatus A interacts with the system of
interest S. The apparatus suffers decoherence through
contact with the environment (E) that collapses A into
some classical set of pointer states, which are not altered by
decoherence. The correlations between these states and the
system are preserved, despite the dissipative decoherence
process. In this sense, decoherence selects the classical
pointer states of A, inducing a transition from quantum
to classical states of the measurement apparatus. The time
scale associated with this transition is usually estimated
by the decoherence half-life. In this work, we show that
contrary to this idea, the pointer states can emerge in a
well-defined instant of time. This result is obtained by
showing that the pointer basis emerges when the classical
correlation (CC) [3] between system and apparatus be-
comes constant. It emphasizes the importance of CC in
the investigation of the measurement process, even though
the joint SA state still has quantum features, as can
be inferred by quantum discord [4]. After the transition,
measurements are repeatable being verifiable by other
observers [5], signaling the emergence of the pointer
basis. We demonstrate this behavior experimentally using
entangled photons [6].

The discussion starts by considering that a system S
initially in a state jc si interacts with a measurement
apparatus A, so that they become entangled [1,2].

The apparatus is in constant interaction with the environ-
ment E, so that during the measurement process the com-
posite system S þAþ E evolves from the (uncoupled)
initial state jc sijA0ijE0i to

P
icijsiijAiijEiðtÞi, where jAii

are orthogonal and thus distinguishable states of the
apparatus, and jEiðtÞi are the states of the environment,
which are inaccessible to the observer. The reduced density
matrix of the system and the apparatus becomes

!sa ¼
X

i;j

cic
&
j hEjðtÞjEiðtÞijsiijAiihsjjhAjj; (1)

where hEjðtÞjEiðtÞi, with i ! j, are rapidly decaying time-
dependent coefficients. Therefore, after a characteristic
period of time known as the decoherence time "D, the
resulting state of S þA is well approximated by

!sa ¼
X

i

jcij2jsiijAiihsijhAij; (2)

for which the states of the bases fjsiig and fjAiig are
classically correlated. This correlation permits an observer
to obtain information about S via measurements on A.
In this sense, it is said that the environment selects a basis
set of classical pointer states fjAiig of the apparatus and
the decoherence time "D is traditionally recognized as a
reasonable estimate of the time necessary for the pointer
basis to emerge [2,7]. However, is it correct to assume that
"D is the necessary time for the information about S be
accessible to a classical observer?
To answer this question, let us consider the amount of

information one obtains about the quantum system by
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Non-Markovianity through accessible information
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Memory effects govern the way a physical system responds to the action of the environment. It is a char-
acteristic of non-Markovian quantum evolution that the environment affects the system relaxation and deco-
herence through a back-flow of energy and information, respectively. To characterize the non-Markovianity
of a given system evolution through a meaningful measure is therefore of utmost relevance. Here we propose
an entanglement-based measure of non-Markovianity, employing the concept of assisted knowledge where the
environment, E , acquires information about a system S by means of its measurement apparatus A. While the
accessible information (the maximum amount of classical information) that E can acquire about S , via inter-
action with A, is monotonously increasing for all (memoryless) Markovian quantum processes, it signals a
back-flow of information in the case of non-Markovian processes. We present an experimental demonstration
of this scenario using an optical-based setup that allows full access to the environmental degrees of freedom.

PACS numbers: 03.65.Yz, 03.65.Ta, 03.65.Ud, 42.50.Lc, 42.50.Xa, 42.50.Dv

All realistic quantum mechanical systems are in interaction
with their surroundings. This inevitable interaction between
a system and its environment typically results in the loss of
quantum features, such as coherence [1]. One important as-
pect in the study of these so-called open quantum systems is
the concept of non-Markovianity, which arises due to memory
effects of the environment. Non-Markovian features might
enable the system to recover part of the lost coherence and in-
formation back from the environment [1, 2]. Although these
memory effects have been investigated in the past, only re-
cently an increase in the understanding of non-Markovianity
from a quantum information perspective has emerged [3–9].

The non-Markovian nature of a dynamical quantum map
can be characterized through a number of distinct methods
[3–8], and a considerable effort has been devoted to its quan-
tification. To date, the measure defined by Breuer, Laine and
Piilo (BLP) [4] is the most significant quantifier of the degree
of non-Markovianity, due to its meaning: non-Markovianity
manifests itself as a reverse flow of information from the en-
vironment back to the system. This back-flow of information
is closely related to memory effects since, as a result of such a
back-flow, the future state of the open system might depend on
its past state. The BLP measure is based on the trace distance
between two states, quantifying the probability of successfully
distinguishing them. In particular, by interpreting the reduc-
tion of distinguishability as a flow of information from the
system to the environment, it was proposed that a Markovian
process is characterized by a monotonous decrease in the dis-
tinguishability between any two states of the system [4].

An alternative method to measure the degree of non-
Markovianity relies on the fact that local completely positive
trace-preserving (CPTP) maps cannot increase the entangle-

∗Electronic address: fanchini@fc.unesp.br

ment between an open quantum system and an isolated an-
cillary system [10]. Exploiting this property, Rivas, Huelga
and Plenio (RHP) have defined a measure for the degree of
non-Markovianity, which in fact measures the deviation from
the divisibility of the map describing the time evolution of
the open quantum system [5]. According to the RHP mea-
sure, a dynamical process is said to be non-Markovian if the
entanglement between the open system and the isolated an-
cilla temporarily increases throughout the dynamics. The par-
ticular significance of the RHP measure is that it provides a
connection between the non-Markovian behavior of dynami-
cal maps and entanglement. However, a meaning in terms of
information flow is still lacking in this approach.

Here, we propose an entanglement-based measure of non-
Markovianity having a direct information based interpreta-
tion. Our method is based on the decoherence program [11],
where a system S is coupled to a measurement apparatus A,
which in turn interacts with an environment E . During this
process, E acquires information about S since an amount of
classical correlation is created between them. We reveal a link
between the proposed measure and the flow of information
between the system S and the environment E in terms of the
maximum amount of classical information that the environ-
ment can obtain about the system, here called the accessible
information (AI), J←SE [12]. In particular, we show that the
rate of change of the entanglement of formation (EoF) ESA

shared by the isolated system S and the apparatus A is di-
rectly related to the rate of change of the AI that the environ-
ment E acquires about the system S. As a natural result of
this connection, J←SE turns out to be a monotonously increas-
ing quantity for all Markovian processes. We illustrate this
scenario considering a two-level system undergoing an am-
plitude damping process [1]. We demonstrate the connection
between J←SE and ESA presenting an experimental realization
using an optical setup that allows full access to the environ-
mental degrees of freedom [13].
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Conservation law for distributed entanglement of formation and quantum discord
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We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF)
and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending
it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF
and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum
computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that
quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations
are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the
balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.

DOI: 10.1103/PhysRevA.84.012313 PACS number(s): 03.67.Mn, 03.67.Ac

I. INTRODUCTION

Quantum discord (QD) is a measure of quantum correlation
defined by Ollivier and Zurek almost ten years ago [1] and,
yet, a subject of increasing interest today [2]. It is well known
that, for a bipartite pure state, the definition of QD coincides
with that of the entanglement of formation (EOF). But it
has remained an open question how those two quantities are
related for general mixed states. Here, we present this desired
relation for arbitrarily mixed states and show that the EOF
and the QD obey a monogamic relation. Surprisingly, this
necessarily requires an extension of the bipartite mixed system
to its tripartite purified version. Nonetheless, we obtain a
conservation relation for the distribution of EOF and QD in the
system—the sum of all possible bipartite entanglement shared
with a particular subsystem, as given by the EOF, cannot be
increased without increasing, by the same amount, the sum of
all QD shared with this same subsystem. When extended to
the case of a tripartite mixed state, this relation results in an
alternative proof for the strong subadditivity of entropy, with
stronger bounds depending on the balance between the sum of
EOF and the sum of QD shared with a particular subsystem.

As an example of the importance of this conservation
relation, we explore the distribution of entanglement in
deterministic quantum computation with one single pure qubit
and a collection of N mixed states (DQC1). The algorithm,
developed by Knill and Laflamme [3], is able to perform
exponentially faster computation of important tasks [4,5] when
compared with well-known classical algorithms, without any
entanglement between the pure qubit and the mixed ones [4].
Arguably, the power of the quantum computer is supposed to
be related to QD, rather than entanglement [6]. Here, using
the conservation relation, we have shown that even in the
supposedly entanglement-free quantum computation there is
a certain amount of multipartite entanglement between the
qubits and the environment, which is responsible for the
nonzero QD (see Fig. 1).

*fanchini@iceb.ufop.br

II. CONSERVATION RELATION

Let us first consider an arbitrary system represented by
a density matrix ρABE with A and B representing two
subsystems and E representing the environment. It is important
to emphasize that the environment, here, is constituted by
the universe minus the subsystems A and B, since, in this
case, ρABE is a pure density matrix. There is an important
monogamic relation between the entanglement of formation
[7] and the classical correlation (CC) [8] between the two
subsystems developed by Koashi and Winter [9], which we
employ to understand the distribution of entanglement. It is
given by

EAB + J←
AE = SA, (1)

where EAB ≡ E(ρAB) is the EOF between A and B, J←
AE ≡

J←(ρAE) is the CC between A and E, and SA ≡ S(ρA) is the
usual Shannon entropy [10] of A. Further, ρAB = TrE{ρABE}
and analogously for ρAE and ρA. Explicitly, the CC reads
J←

AE = max{"E
x }[S(ρA) −

∑
x pxS(ρx

A)], where the maximum
is taken over all positive-operator-valued measurements {"E

x }
performed on subsystem E, with probability of x as an out-
come, px = TrA{"E

x ρAE"E
x }, and ρx

A = TrE{"E
x ρAE"E

x }/px .
One can easily understand Eq. (1). The entropy S(ρA) measures
the amount of correlation (classical and/or quantum) between
A and the external world. If we divide the external world into
two parts B and E, the amount of quantum correlation between
A and B, plus the amount of classical correlation between A
and the complementary part E, must be equal to SA. In this
sense, Eq. (1) poses constraints on the ability that system A
has to share correlations with other systems. For this reason it
is called a monogamous relation.

We can show a different aspect of Eq. (1) by adding to
both of its sides the mutual information between A and E,
IAE = SA + SE − SAE . After some manipulation we obtain

EAB = δ←
AE + SA|E, (2)

where SA|E = SAE − SE is the conditional entropy and δ←
AE =

IAE − J←
AE is the QD between subsystem A and the en-

vironment E. Equation (2) tells us that the entanglement
between two arbitrary subsystems A and B is related to the

012313-11050-2947/2011/84(1)/012313(4) ©2011 American Physical Society
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We relate the problem of irreversibility of entanglement with the recently defined measures of quantum

correlation—quantum discord and one-way quantum deficit. We show that the entanglement of formation

is always strictly larger than the coherent information and the entanglement cost is also larger in most

cases. We prove irreversibility of entanglement under local operations and classical communication for a

family of entangled states. This family is a generalization of the maximally correlated states for which we

also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the

distillable secret key, and the quantum discord.

DOI: 10.1103/PhysRevLett.107.020502 PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Yz

Two complementary and among the most important
tasks in quantum information theory (QIT) are entangle-
ment dilution and entanglement distillation [1,2]. These
tasks are performed in a scenario where two spatially
separated observers, usually called Alice and Bob, share
some quantum states and are able to manipulate their
respective parties through local operations and classical
communication (LOCC) [2]. In the first task, Alice and
Bob share a large number of copies of a standard pure
maximally entangled state,

j!i ¼ 1ffiffiffi
2

p ðj00iþ j11iÞ; (1)

which is associated with a unit of entanglement called
e-bit. Their task is to construct many copies of an arbitrary,
generally mixed, state ! from many copies of j!i using
only LOCC (see Fig. 1). In the second task, Alice and
Bob want to perform the reverse operation, i.e., to extract
from many copies of an arbitrary state, generally mixed,
the maximal possible amount of e-bits using only LOCC.
Those tasks naturally raise the two most important mea-
sures of entanglement-entanglement cost (EC) and distil-
lable entanglement (ED) [2]. For a given state !ab, E

Cð!abÞ
is the optimal rate for converting a large number of e-bits
into a large number of copies of the mixed state !ab under
LOCC by Alice and Bob. Similarly EDð!abÞ is the optimal
rate for converting a large number of !ab into e-bits under
LOCC [3].

When Alice and Bob can build a large number of copies
of an arbitrary state !ab and can get the same amount
of e-bits back through LOCC, it is said that there is
entanglement reversibility. Conversely, the entanglement
is said irreversible. To understand the aspects leading to
entanglement irreversibility is one of the most important
open problems in QIT [2] with practical implications.
Particularly, entanglement dilution is connected to the
problem of classical communication over a noise quantum
channel [4] and entanglement distillation is connected to

quantum communication and quantum key distribution
[3,5–7] for secure cryptography. It is known that the task
of building an entangled state and extracting back the
e-bits is reversible if Alice and Bob are limited to build
and to distill pure entangled states [1]. For a pure state ’,
EC and ED are equal to the von Neumann entropy Sð!rÞ of
the reduced density matrix !r of one of the subsystems.
Moreover, it is a long-standing conjecture that the only
states with EC ¼ ED are pure states and the so-called
pseudopure (PP) [3,8] states,

!PP ¼
X

pij’i
abih’i

abj % jfiihfij; (2)

where jfii is an ancilla, locally accessible for Alice or Bob,
working as a flag that indicates which pure entangled state
j’i

abi is in the mixture. Although widely believed, there are
few concrete evidences for this conjecture. To understand
irreversibility for mixed states has revealed itself to be a
very difficult question and the first examples were given
only some years later in Refs. [9–12]. Particularly, in
Ref. [12] it is shown that one can find mixed states that
consume entanglement to be created but no entanglement
can be extracted from it, the so-called bound entanglement.

FIG. 1 (color online). Entanglement dilution-distillation cycle.
The entanglement loss is given by ". In the case of reversible
entanglement, " vanishes. In the irreversible case of Eqs. (8) and
(9), " is the regularized quantum discord.

PRL 107, 020502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
8 JULY 2011

0031-9007=11=107(2)=020502(4) 020502-1 ! 2011 American Physical Society

T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Locally inaccessible information as a fundamental
ingredient to quantum information

F F Fanchini1,5, L K Castelano2, M F Cornelio3

and M C de Oliveira3,4,5

1 Departamento de Fı́sica, Universidade Federal de Ouro Preto,
CEP 35400-000, Ouro Preto, MG, Brazil
2 Departamento de Fı́sica, Universidade Federal de São Carlos, CEP 13565-905,
São Carlos, SP, Brazil
3 Instituto de Fı́sica Gleb Wataghin, Universidade Estadual de Campinas,
CEP 13083-859, Campinas, SP, Brazil
4 Institute for Quantum Information Science, University of Calgary, Alberta,
T2N 1N4, Canada
E-mail: fanchini@iceb.ufop.br and marcos@ifi.unicamp.br

New Journal of Physics 14 (2012) 013027 (13pp)
Received 4 August 2011
Published 16 January 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/1/013027

Abstract. Quantum discord (QD) measures the fraction of the pairwise mutual
information that is locally inaccessible in a multipartite system. Fundamental
aspects related to two important measures in quantum information theory,
namely the entanglement of formation (EOF) and the conditional entropy, can
be understood in terms of the distribution of this form of local inaccessible
information (LII). As such, the EOF for an arbitrarily mixed bipartite system
AB can be related to the gain or loss of LII due to the extra knowledge that
a purifying ancillary system E has on the pair AB. Similarly, a clear meaning
of the negativity of the conditional entropy for AB is given. We employ these
relations to elucidate important and yet not well-understood quantum features,
such as the bipartite entanglement sudden death and the distinction between EOF
and QD for quantifying quantum correlation. For that we introduce the concept
of LII flow that quantifies the LII shared in a multipartite system when sequential
local measurements are carried out.
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Unlike correlation of classical systems, entanglement of quantum systems cannot be distributed at will: if one
system A is maximally entangled with another system B, it cannot be entangled at all with a third system C. This
concept, known as the monogamy of entanglement, is manifest when the entanglement of A with a pair BC can be
divided as contributions of the entanglement between A and B and A and C, plus a term τABC involving genuine
tripartite entanglement and so expected to be always positive. A very important measure in quantum information
theory, the entanglement of formation (EOF), fails to satisfy this last requirement. Here we present the reasons
for that and show a set of conditions that an arbitrary pure tripartite state must satisfy for the EOF to become a
monogamous measure, i.e., for τABC ! 0. The relation derived is connected to the discrepancy between quantum
and classical correlations, τABC being negative whenever the quantum correlation prevails over the classical one.
This result is employed to elucidate features of the distribution of entanglement during a dynamical evolution.
It also helps to relate all monogamous instances of the EOF to the squashed sntanglement, an entanglement
measure that is always monogamous.

DOI: 10.1103/PhysRevA.87.032317 PACS number(s): 03.67.Mn, 03.65.Ud

I. INTRODUCTION

The concept of the monogamy of an entanglement measure
E asserts that, in a tripartite A, B, and C system, the
entanglement of A with BC can be divided as EA|BC = EA|B +
EA|C + τABC , where EA|i , i = B,C, is a bipartite entanglement
and τABC is a genuine tripartite entanglement. In that sense,
unlike correlation in classical systems, for entanglement there
is a trade-off between the amount of bipartite entanglement
A can share with B and C. In 2000, Coffman, Kundu, and
Wootters (CKW) [1] derived a monogamous relation for
the squared concurrence and defined the genuine tripartite
entanglement as the tangle (hereafter called the concur-
rence tangle) [1], τABC = C2

A(BC) − C2
AB − C2

AC , where C2
ij is

the square of the concurrence between the pair i and j . The
concurrence tangle is always positive for a three-qubit system
[1] and for multiqubit systems [2]. However, it is known that
a similar analysis made with the entanglement of formation
(EOF) would give a tangle that can be positive or negative
(hereafter we call this tangle the EOF tangle). Although there
are some instances in which the EOF could be distributed in
a monogamous fashion, it is known that it is not, in general, a
necessarily monogamous entanglement measure (see a more
complete discussion in Refs. [3–5]). This is puzzling, since
the EOF satisfies many of the axioms required for a good
entanglement measure and, further, has a clear operational
meaning [6]. So why is the EOF tangle negative or positive?

In fact it is now known that entanglement is not the only
form of quantum correlation, since there are instances where
a state that is separable (not entangled) still possesses a sort

*fanchini@fc.unesp.br
†marcos@ifi.unicamp.br

of correlation which, in principle, could be used to perform
certain tasks more efficiently than with classical correlation
only. It is not surprising though that both forms of quantum
correlation can be related to each other through extended
system [7] distribution formulas. For example, it is possible to
describe a conservation relation [8] for distribution of the EOF
and quantum discord (QD), a measure of quantum correlation;
for an arbitrary tripartite pure system, the sum of the QD of a
chosen partition, given measurements on the complementary
partitions, must be equal to the sum of the pairwise EOF
between the chosen partition and the complementary ones.
Surprisingly, the sum of the pairwise EOFs appears in a
fashion quite similar to the desired expression for the so-called
monogamy of entanglement, and the relation obtained can
be connected to the way that classical correlations [9,10] are
distributed [11–13].

Until a few years ago, the conjecture that the classical
correlation would always be greater than the quantum cor-
relation for any quantum state was broadly accepted [9,10]. In
2009, Maziero et al. [14] presented the first counterexample
to this conjecture, while studying the dissipative dynamics
for two qubits. Despite their findings, the balance between
classical and quantum correlation has not been connected to
any quantum measure or protocol. In this paper, we show
necessary and sufficient conditions for the monogamy of the
EOF to be established with the help of a general quantum
correlation measure, the QD, and identify the EOF tangle for
an arbitrary tripartite state as the difference between classical
and quantum correlations. We show that the balance between
classical and quantum correlation is crucial to understand this
important open problem. For that we develop an operational
interpretation of the EOF tangle as a measure of the imbalance
of the quantum and the classical correlations, here called the
correlation discrepancy. In fact, very recently, Giorgi showed
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We use the classical correlation between a quantum system being measured and its measurement

apparatus to analyze the amount of information being retrieved in a quantum measurement process.

Accounting for decoherence of the apparatus, we show that these correlations may have a sudden

transition from a decay regime to a constant level. This transition characterizes a nonasymptotic

emergence of the pointer basis, while the system apparatus can still be quantum correlated. We provide

a formalization of the concept of emergence of a pointer basis in an apparatus subject to decoherence.

This contrast of the pointer basis emergence to the quantum to classical transition is demonstrated in an

experiment with polarization entangled photon pairs.
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The measurement problem is at the core of fundamental
questions of quantum physics and the quantum-classical
boundary [1]. One way to approach the classical limit is
through the process of decoherence [2], where a quantum
measurement apparatus A interacts with the system of
interest S. The apparatus suffers decoherence through
contact with the environment (E) that collapses A into
some classical set of pointer states, which are not altered by
decoherence. The correlations between these states and the
system are preserved, despite the dissipative decoherence
process. In this sense, decoherence selects the classical
pointer states of A, inducing a transition from quantum
to classical states of the measurement apparatus. The time
scale associated with this transition is usually estimated
by the decoherence half-life. In this work, we show that
contrary to this idea, the pointer states can emerge in a
well-defined instant of time. This result is obtained by
showing that the pointer basis emerges when the classical
correlation (CC) [3] between system and apparatus be-
comes constant. It emphasizes the importance of CC in
the investigation of the measurement process, even though
the joint SA state still has quantum features, as can
be inferred by quantum discord [4]. After the transition,
measurements are repeatable being verifiable by other
observers [5], signaling the emergence of the pointer
basis. We demonstrate this behavior experimentally using
entangled photons [6].

The discussion starts by considering that a system S
initially in a state jc si interacts with a measurement
apparatus A, so that they become entangled [1,2].

The apparatus is in constant interaction with the environ-
ment E, so that during the measurement process the com-
posite system S þAþ E evolves from the (uncoupled)
initial state jc sijA0ijE0i to

P
icijsiijAiijEiðtÞi, where jAii

are orthogonal and thus distinguishable states of the
apparatus, and jEiðtÞi are the states of the environment,
which are inaccessible to the observer. The reduced density
matrix of the system and the apparatus becomes

!sa ¼
X

i;j

cic
&
j hEjðtÞjEiðtÞijsiijAiihsjjhAjj; (1)

where hEjðtÞjEiðtÞi, with i ! j, are rapidly decaying time-
dependent coefficients. Therefore, after a characteristic
period of time known as the decoherence time "D, the
resulting state of S þA is well approximated by

!sa ¼
X

i

jcij2jsiijAiihsijhAij; (2)

for which the states of the bases fjsiig and fjAiig are
classically correlated. This correlation permits an observer
to obtain information about S via measurements on A.
In this sense, it is said that the environment selects a basis
set of classical pointer states fjAiig of the apparatus and
the decoherence time "D is traditionally recognized as a
reasonable estimate of the time necessary for the pointer
basis to emerge [2,7]. However, is it correct to assume that
"D is the necessary time for the information about S be
accessible to a classical observer?
To answer this question, let us consider the amount of

information one obtains about the quantum system by
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Memory effects govern the way a physical system responds to the action of the environment. It is a char-
acteristic of non-Markovian quantum evolution that the environment affects the system relaxation and deco-
herence through a back-flow of energy and information, respectively. To characterize the non-Markovianity
of a given system evolution through a meaningful measure is therefore of utmost relevance. Here we propose
an entanglement-based measure of non-Markovianity, employing the concept of assisted knowledge where the
environment, E , acquires information about a system S by means of its measurement apparatus A. While the
accessible information (the maximum amount of classical information) that E can acquire about S , via inter-
action with A, is monotonously increasing for all (memoryless) Markovian quantum processes, it signals a
back-flow of information in the case of non-Markovian processes. We present an experimental demonstration
of this scenario using an optical-based setup that allows full access to the environmental degrees of freedom.

PACS numbers: 03.65.Yz, 03.65.Ta, 03.65.Ud, 42.50.Lc, 42.50.Xa, 42.50.Dv

All realistic quantum mechanical systems are in interaction
with their surroundings. This inevitable interaction between
a system and its environment typically results in the loss of
quantum features, such as coherence [1]. One important as-
pect in the study of these so-called open quantum systems is
the concept of non-Markovianity, which arises due to memory
effects of the environment. Non-Markovian features might
enable the system to recover part of the lost coherence and in-
formation back from the environment [1, 2]. Although these
memory effects have been investigated in the past, only re-
cently an increase in the understanding of non-Markovianity
from a quantum information perspective has emerged [3–9].

The non-Markovian nature of a dynamical quantum map
can be characterized through a number of distinct methods
[3–8], and a considerable effort has been devoted to its quan-
tification. To date, the measure defined by Breuer, Laine and
Piilo (BLP) [4] is the most significant quantifier of the degree
of non-Markovianity, due to its meaning: non-Markovianity
manifests itself as a reverse flow of information from the en-
vironment back to the system. This back-flow of information
is closely related to memory effects since, as a result of such a
back-flow, the future state of the open system might depend on
its past state. The BLP measure is based on the trace distance
between two states, quantifying the probability of successfully
distinguishing them. In particular, by interpreting the reduc-
tion of distinguishability as a flow of information from the
system to the environment, it was proposed that a Markovian
process is characterized by a monotonous decrease in the dis-
tinguishability between any two states of the system [4].

An alternative method to measure the degree of non-
Markovianity relies on the fact that local completely positive
trace-preserving (CPTP) maps cannot increase the entangle-

∗Electronic address: fanchini@fc.unesp.br

ment between an open quantum system and an isolated an-
cillary system [10]. Exploiting this property, Rivas, Huelga
and Plenio (RHP) have defined a measure for the degree of
non-Markovianity, which in fact measures the deviation from
the divisibility of the map describing the time evolution of
the open quantum system [5]. According to the RHP mea-
sure, a dynamical process is said to be non-Markovian if the
entanglement between the open system and the isolated an-
cilla temporarily increases throughout the dynamics. The par-
ticular significance of the RHP measure is that it provides a
connection between the non-Markovian behavior of dynami-
cal maps and entanglement. However, a meaning in terms of
information flow is still lacking in this approach.

Here, we propose an entanglement-based measure of non-
Markovianity having a direct information based interpreta-
tion. Our method is based on the decoherence program [11],
where a system S is coupled to a measurement apparatus A,
which in turn interacts with an environment E . During this
process, E acquires information about S since an amount of
classical correlation is created between them. We reveal a link
between the proposed measure and the flow of information
between the system S and the environment E in terms of the
maximum amount of classical information that the environ-
ment can obtain about the system, here called the accessible
information (AI), J←SE [12]. In particular, we show that the
rate of change of the entanglement of formation (EoF) ESA

shared by the isolated system S and the apparatus A is di-
rectly related to the rate of change of the AI that the environ-
ment E acquires about the system S. As a natural result of
this connection, J←SE turns out to be a monotonously increas-
ing quantity for all Markovian processes. We illustrate this
scenario considering a two-level system undergoing an am-
plitude damping process [1]. We demonstrate the connection
between J←SE and ESA presenting an experimental realization
using an optical setup that allows full access to the environ-
mental degrees of freedom [13].
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We assume the following triparite state :

As a result of the interaction between A and E, the state 
SA evolves into

and the state of SE evolves into
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•Simplified  and computable measure of non-
Markovianity!
!

•Interpretation in terms of flow of information 
(measured by the classical correlation)!
!

•Experimental demonstration using an optical setup!
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